首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH-cytochrome P450 oxidoreductase (CPR) plays a central role in chemical detoxification and insecticide resistance in Anopheles gambiae, the major vector for malaria. Anopheles gambiae CPR (AgCPR) was initially expressed in Eschericia coli but failed to bind 2′, 5′-ADP Sepharose. To investigate this unusual trait, we expressed and purified a truncated histidine-tagged version for side-by-side comparisons with human CPR. Close functional similarities were found with respect to the steady state kinetics of cytochrome c reduction, with rates (k cat) of 105 s−1 and 88 s−1, respectively, for mosquito and human CPR. However, the inhibitory effects of 2′,5′-ADP on activity were different; the IC50 value of AgCPR for 2′, 5′ –ADP was significantly higher (6–10 fold) than human CPR (hCPR) in both phosphate and phosphate-free buffer, indicative of a decrease in affinity for 2′, 5′- ADP. This was confirmed by isothermal titration calorimetry where binding of 2′,5′-ADP to AgCPR (K d = 410±18 nM) was ∼10 fold weaker than human CPR (K d = 38 nM). Characterisation of the individual AgFMN binding domain revealed much weaker binding of FMN (Kd = 83±2.0 nM) than the equivalent human domain (Kd = 23±0.9 nM). Furthermore, AgCPR was an order of magnitude more sensitive than hCPR to the reductase inhibitor diphenyliodonium chloride (IC50 = 28 µM±2 and 361±31 µM respectively). Taken together, these results reveal unusual biochemical differences between mosquito CPR and the human form in the binding of small molecules that may aid the development of ‘smart’ insecticides and synergists that selectively target mosquito CPR.  相似文献   

2.

Background

Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC.

Methodology/Principal Findings

BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the ∼29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5′AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5′AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5′AMP. Docking simulations also suggest that bio-5′AMP hydrogen bonds to the conserved ‘GRGRRG’ sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The Km for BCCP was ∼5.2 µM and ∼420 nM for biotin. MtBPL has low affinity (Kb = 1.06×10−6 M) for biotin relative to EcBirA but their Km are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5′AMP by EcBirA is channeled for its repressor activity.

Conclusions/Significance

These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.  相似文献   

3.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

4.

Background and Aims

An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export.

Methods

Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters.

Key Results

Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid.

Conclusions

Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well-aerated adventitious roots, implying that loss of function of root signalling contributes to closing of stomata during flooding. The possibility that this involves inhibition of cytokinin or gibberellin export was not well supported.Key words: Root to shoot communication, flooding stress, stomatal closure, photosynthesis, chlorophyll fluorescence, gas exchange, adventitious roots, plant hormones, abscisic acid, cytokinins, gibberellic acid  相似文献   

5.
Subunit ɛ of bacterial and chloroplast FOF1-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit ɛ can adopt two conformations. In the “extended”, inhibitory conformation, its two C-terminal α-helices are stretched along subunit γ. In the “contracted”, noninhibitory conformation, these helices form a hairpin. The transition of subunit ɛ from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59°C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit ɛ and in the N-terminus of subunit γ was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 μM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit β were found to stabilize the extended conformation of ɛ. Binding of ATP directly to ɛ was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 μM) suggests that subunit ɛ probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.  相似文献   

6.
Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disease caused by expanded CCUG repeats that may exhibit toxicity by sequestering the splicing regulator MBNL1. A series of triaminotriazine- and triaminopyrimidine-based small molecules (ligands 1–3) were designed, synthesized and tested as inhibitors of the MBNL1–CCUG interaction. Despite the structural similarities of the triaminotriazine and triaminopyrimidine units, the triaminopyrimidine-based ligands bind with low micromolar affinity to CCUG repeats (Kd ∼ 0.1–3.6 µM) whereas the triaminotriazine ligands do not bind CCUG repeats. Importantly, these simple and small triaminopyrimidine ligands exhibit both strong inhibition (Ki ∼ 2 µM) of the MBNL1–CCUG interaction and high selectivity for CCUG repeats over other RNA targets. These experiments suggest these compounds are potential lead agents for the treatment of DM2.  相似文献   

7.
8.
Ion translocation by the sarcoplasmic reticulum Ca2+-ATPase depends on large movements of the A-domain, but the driving forces have yet to be defined. The A-domain is connected to the ion-binding membranous part of the protein through linker regions. We have determined the functional consequences of changing the length of the linker between the A-domain and transmembrane helix M3 (“A-M3 linker”) by insertion and deletion mutagenesis at two sites. It was feasible to insert as many as 41 residues (polyglycine and glycine-proline loops) in the flexible region of the linker without loss of the ability to react with Ca2+ and ATP and to form the phosphorylated Ca2E1P intermediate, but the rate of the energy-transducing conformational transition to E2P was reduced by >80%. Insertion of a smaller number of residues gave effects gradually increasing with the length of the insertion. Deletion of two residues at the same site, but not replacement with glycine, gave a similar reduction as the longest insertion. Insertion of one or three residues in another part of the A-M3 linker that forms an α-helix (“A3 helix”) in E2/E2P conformations had even more profound effects on the ability of the enzyme to form E2P. These results demonstrate the importance of the length of the A-M3 linker and of the position and integrity of the A3 helix for stabilization of E2P and suggest that, during the normal enzyme cycle, strain of the A-M3 linker could contribute to destabilize the Ca2E1P state and thereby to drive the transition to E2P.The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 is a membrane-bound ion pump that transports Ca2+ against a steep concentration gradient, utilizing the energy derived from ATP hydrolysis (13). It belongs to the family of P-type ATPases, in which the γ-phosphoryl group of ATP is transferred to a conserved aspartic acid residue during the reaction cycle. Both phospho and dephospho forms of the enzyme undergo transitions between so-called E1 and E2 conformations (Scheme 1). The E1 and E1P states display specificity for reaction with ATP and ADP, respectively (“kinase activity”), whereas E2P and E2 react with water and Pi instead of nucleotide (“phosphatase activity”). The E1 dephosphoenzyme of the Ca2+-ATPase binds two Ca2+ ions with high affinity from the cytoplasmic side, thereby triggering the phosphorylation from ATP. In E1P, the Ca2+ ions are occluded with no access to either side of the membrane, and Ca2+ is released to the luminal side after the conformational transition to E2P, likely in exchange for protons being countertransported. The structural organization and domain movements leading to Ca2+ translocation have recently been elucidated by crystallization of SERCA in various conformational states thought to represent intermediates in the pump cycle (47). SERCA is made up of 10 membrane-spanning mostly helical segments, M1–M10 (numbered from the N terminus), of which M4–M6 and M8 contribute liganding groups for Ca2+ binding, and a cytoplasmic headpiece separated into three distinct domains, named A (“actuator”), P (“phosphorylation”), and N (“nucleotide binding”). The A-domain appears to undergo considerable movement during the functional cycle. In the E1/E1P states, the highly conserved TGE183S loop of the A-domain is at great distance from the catalytic center containing nucleotide-binding residues and the phosphorylated Asp351 of the P-domain, but during the Ca2E1P → E2P transition, the A-domain rotates ∼90° around an axis perpendicular to the membrane, thereby moving the TGE183S loop into close contact with the catalytic site such that Glu183 can catalyze dephosphorylation of E2P (8, 9). During the dephosphorylation, Glu183 likely coordinates the water molecule attacking the aspartyl phosphoryl bond and withdraws a hydrogen. Hence, the movement of the A-domain during the Ca2E1P → E2P transition is the event that changes the catalytic specificity from kinase activity to phosphatase activity. During the dephosphorylation of E2P → E2, there is only a slight change of the position of the A-domain, and a large back-rotation is needed to reach the E1 form from E2; thus, the A-domain rotation defines the difference between the E1/E1P class of conformations and the E2/E2P class. Because the A-domain is physically connected to transmembrane helices M1–M3 through the linker segments A-M1, A-M2, and A-M3, the A-domain movement occurring during the Ca2E1P → E2P transition may be a key event in the opening of the Ca2+ sites toward the lumen, thus explaining the coupling of ATP hydrolysis to Ca2+ translocation. An important unanswered question is, however, how the movement of the A-domain is brought about. Which are the driving forces that destabilize Ca2E1P and/or stabilize E2P such that the energy-transducing Ca2E1P → E2P transition takes place? To answer this, it seems important to elucidate the exact roles of the linkers. Intriguing results have been obtained by Suzuki and co-workers, who demonstrated the importance of the A-M1 linker in connection with luminal release of Ca2+ from E2P (10). In this study, we have addressed the role of the A-M3 linker. An alignment of two crystal structures thought to resemble the Ca2E1P and E2·Pi forms (5), respectively, is shown in Fig. 1. The A-domain rotation is associated with formation of a helix (“A3 helix”) in the N-terminal part of the A-M3 linker, and this helix seems to interact with a helix bundle consisting of the P5–P7 helices of the P-domain, a feature exhibited by all published crystal structures of the E2 type (cf. supplemental Fig. S1 and Ref. 11). Moreover, when structures of similar crystallographic resolution are compared (as in Fig. 1), the non-helical part of the A-M3 linker in E2-type structures has a higher relative temperature factor (“B-factor”) than the corresponding segment in Ca2E1P (Fig. 1C, thick part colored orange-red for high temperature factor), thus suggesting a higher degree of freedom of movement relative to Ca2E1P. Hence, the A-M3 linker appears more strained in Ca2E1P compared with E2 forms, and the greater flexibility of the linker in E2 forms may promote the formation of the A3 helix.Open in a separate windowSCHEME 1.Ca2+-ATPase reaction cycle.Open in a separate windowFIGURE 1.A-M3 linker configuration in E1- and E2-type crystal structures. Crystal structures with Protein Data Bank codes 2zbd (Ca2E1P analog) and 1wpg (E2·Pi analog) are shown aligned. A, overview of structure 2zbd in bluish colors with green A-M3 linker and structure 1wpg in reddish colors with wheat A-M3 linker. B, magnification of the A-M3 linker (corresponding to the red box in A) with arrows indicating site 1, between Glu243 and Gln244, and site 2, between Gly233 and Lys234, in both conformations. The green A-M3 linker to the right is structure 2zbd. The wheat A-M3 linker to the left is structure 1wpg. Note the kinked A3 helix forming part of the latter structure. C, same A-M3 linker structures as in B but with the magnitude of the temperature factor (B-factor) indicated in colors (red > orange > yellow > green > blue) and by tube diameter. Because the two crystal structures selected here as E1- and E2-type representatives have similar crystallographic resolution (2.40 and 2.30 Å, respectively), the differences in temperature factor in specific regions provide direct information about chain flexibility.Here, we have determined the functional consequences of changing the length (and thereby likely the strain) of the A-M3 linker. Polyglycine and glycine-proline loops of varying lengths were inserted at two different sites in the linker (Fig. 1), and deletions were also studied. Rather unexpectedly, we were able to insert as many as 41 residues in one of the sites without loss of expression or ability to react with Ca2+ and ATP, forming Ca2E1P, but the Ca2E1P → E2P transition was greatly affected.  相似文献   

9.
Lipids from the extremely halophilic Archaea, Haloarcula marismortui, contain abundant phytanyl diether phospholipids, namely archaetidic acid (AA), archaetidylglycerol (AG), archaetidylglycerosulfate (AGS), with mainly archaetidylglycerophosphate methyl ester (AGP-Me). These were accompanied by a triglycosyl archaeol (TGA), lacking characteristic sulfate groups. Tandem-mass spectrometry was employed to provide fingerprints for identifying these known lipids, as well as small amounts of unsaturated phospholipids. These contained 3 and 6 double bonds in their archaeol moiety, suggested by negative tandem-MS of intact phospholipids, as indicated by differences between their pseudo-molecular ion and specific fragment ions designated as π2. The core ether lipids were confirmed by electrospray ionization mass spectrometry (ESI-MS) as 2,3-di-O-phytanyl-sn-glycerol (C20, C20), which gave rise to a precursor-ion at m/z 660 [M+Li]+, and its fragment ion at m/z 379 [M+Li]+, consistent with mono-O-phytanyl-glycerol. Furthermore, lithiated ions at m/z 654 (MS1), 379 (MS2) and m/z 648 (MS1), 373 (MS2), combined with 1H/13C NMR chemical shifts at δ 5.31-121.6 (C2/2′-H2/2′), 5.08-124.9 (C6/6′-H6/6′) and 5.10-126.0 (10/10′-H10/10′) confirmed the presence of unsaturated homologs of archaeol. We carried out a comprehensive study on the lipids present in cells of H. marismortui. We used positive and negative ESI-MS with tandem-MS, which served as a fingerprint analysis for identifying the majority of component lipids.  相似文献   

10.
This work investigates the role of charge of the phosphorylated aspartate, Asp369, of Na+,K+-ATPase on E1E2 conformational changes. Wild type (porcine α1/His101), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5′-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S. J. (1980) J. Bioenerg. Biomembr. 12, 111–136). One central finding is that the D369N/D369A mutants are strongly stabilized in E2 compared with wild type and D369E or T212A mutants. Stabilization of E2(Rb) is detected by a reduced K0.5Rb for the Rb+-induced E1E2(2Rb) transition. The mechanism involves a greatly reduced rate of E2(2Rb) → E1Na with no effect on E1E2(2Rb). Lowering the pH from 7.5 to 5.5 strongly stabilizes wild type in E2 but affects the D369N mutant only weakly. Thus, this “Bohr” effect of pH on E1E2 is due largely to protonation of Asp369. Two novel effects of phosphate and vanadate were observed with the D369N/D369A mutants as follows. (a) E1E2·P is induced by phosphate without Mg2+ ions by contrast with wild type, which requires Mg2+. (b) Both phosphate and vanadate induce rapid E1E2 transitions compared with slow rates for the wild type. With reference to crystal structures of Ca2+-ATPase and Na+,K+-ATPase, negatively charged Asp369 favors disengagement of the A domain from N and P domains (E1), whereas the neutral D369N/D369A mutants favor association of the A domain (TGES sequence) with P and N domains (E2). Changes in charge interactions of Asp369 may play an important role in triggering E1P(3Na) ↔ E2P and E2(2K) → E1Na transitions in native Na+,K+-ATPase.  相似文献   

11.
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 μM) to high (1,024 μM) intracellular concentrations of calcium (Ca2+ i) using single-channel recording. Open probability (P o) increased with increasing Ca2+ i (K 0.5 11.2 ± 0.3 μM at +30 mV, Hill coefficient of 3.5 ± 0.3), reaching a maximum of ∼0.97 for Ca2+ i ∼ 100 μM. Increasing Ca2+ i further to 1,024 μM had little additional effect on either P o or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+ i (>100 μM), compared with three to four open and five to seven closed states at lower Ca2+ i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+ i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+ i. Kinetic schemes drawn from Eigen''s general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+ i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+ i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+ i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+ i could also approximate the gating from low to high Ca2+ i. The considered models can serve as working hypotheses for the gating of BK channels.  相似文献   

12.
Transmitter molecules bind to synaptic acetylcholine receptor channels (AChRs) to promote a global channel-opening conformational change. Although the detailed mechanism that links ligand binding and channel gating is uncertain, the energy changes caused by mutations appear to be more symmetrical between subunits in the transmembrane domain compared with the extracellular domain. The only covalent connection between these domains is the pre-M1 linker, a stretch of five amino acids that joins strand β10 with the M1 helix. In each subunit, this linker has a central Arg (Arg3′), which only in the non-α-subunits is flanked by positively charged residues. Previous studies showed that mutations of Arg3′ in the α-subunit alter the gating equilibrium constant and reduce channel expression. We recorded single-channel currents and estimated the gating rate and equilibrium constants of adult mouse AChRs with mutations at the pre-M1 linker and the nearby residue Glu45 in non-α-subunits. In all subunits, mutations of Arg3′ had similar effects as in the α-subunit. In the ϵ-subunit, mutations of the flanking residues and Glu45 had only small effects, and there was no energy coupling between ϵGlu45 and ϵArg3′. The non-α-subunit Arg3′ residues had Φ-values that were similar to those for the α-subunit. The results suggest that there is a general symmetry between the AChR subunits during gating isomerization in this linker and that the central Arg is involved in expression more so than gating. The energy transfer through the AChR during gating appears to mainly involve Glu45, but only in the α-subunits.  相似文献   

13.
As a stable analog for ADP-sensitive phosphorylated intermediate of sarcoplasmic reticulum Ca2+-ATPase E1PCa2·Mg, a complex of E1Ca2·BeFx, was successfully developed by addition of beryllium fluoride and Mg2+ to the Ca2+-bound state, E1Ca2. In E1Ca2·BeFx, most probably E1Ca2·BeF3, two Ca2+ are occluded at high affinity transport sites, its formation required Mg2+ binding at the catalytic site, and ADP decomposed it to E1Ca2, as in E1PCa2·Mg. Organization of cytoplasmic domains in E1Ca2·BeFx was revealed to be intermediate between those in E1Ca2·AlF4 ADP (transition state of E1PCa2 formation) and E2·BeF3·(ADP-insensitive phosphorylated intermediate E2P·Mg). Trinitrophenyl-AMP (TNP-AMP) formed a very fluorescent (superfluorescent) complex with E1Ca2·BeFx in contrast to no superfluorescence of TNP-AMP bound to E1Ca2·AlFx. E1Ca2·BeFx with bound TNP-AMP slowly decayed to E1Ca2, being distinct from the superfluorescent complex of TNP-AMP with E2·BeF3, which was stable. Tryptophan fluorescence revealed that the transmembrane structure of E1Ca2·BeFx mimics E1PCa2·Mg, and between those of E1Ca2·AlF4·ADP and E2·BeF3. E1Ca2·BeFx at low 50–100 μm Ca2+ was converted slowly to E2·BeF3 releasing Ca2+, mimicking E1PCa2·Mg → E2P·Mg + 2Ca2+. Ca2+ replacement of Mg2+ at the catalytic site at approximately millimolar high Ca2+ decomposed E1Ca2·BeFx to E1Ca2. Notably, E1Ca2·BeFx was perfectly stabilized for at least 12 days by 0.7 mm lumenal Ca2+ with 15 mm Mg2+. Also, stable E1Ca2·BeFx was produced from E2·BeF3 at 0.7 mm lumenal Ca2+ by binding two Ca2+ to lumenally oriented low affinity transport sites, as mimicking the reverse conversion E2P· Mg + 2Ca2+E1PCa2·Mg.Sarcoplasmic reticulum Ca2+-ATPase (SERCA1a),2 a representative member of the P-type ion transporting ATPases, catalyze Ca2+ transport coupled with ATP hydrolysis (Fig. 1) (19). The enzyme forms phosphorylated intermediates from ATP or Pi in the presence of Mg2+ (1013). In the transport cycle, the enzyme is first activated by cooperative binding of two Ca2+ ions at high affinity transport sites (E2 to E1Ca2, steps 1–2) (14) and autophosphorylated at Asp351 with MgATP to form the ADP-sensitive phosphoenzyme (E1P, step 3), which reacts with ADP to regenerate ATP in the reverse reaction. Upon this E1P formation, the two bound Ca2+ are occluded in the transport sites (E1PCa2). Subsequent isomeric transition to the ADP-insensitive form (E2PCa2), i.e. loss of ADP sensitivity at the catalytic site, results in rearrangement of the Ca2+ binding sites to deocclude Ca2+, reduce the affinity, and open the lumenal gate, thus releasing Ca2+ into the lumen (E2P, steps 4–5). Finally Asp351-acylphosphate in E2P is hydrolyzed to form the Ca2+-unbound inactive E2 state (steps 6 and 7). Mg2+ bound at the catalytic site is required as a physiological catalytic cofactor in phosphorylation and dephosphorylation and thus for the transport cycle. The cycle is totally reversible, e.g. E2P can be formed from Pi in the presence of Mg2+ and absence of Ca2+, and subsequent Ca2+ binding at lumenally oriented low affinity transport sites of E2P reverses the Ca2+-releasing step and produces E1PCa2, which is then decomposed to E1Ca2 by ADP.Open in a separate windowFIGURE 1.Ca2+ transport cycle of Ca2+-ATPase.Various intermediate structural states in the transport cycle were fixed as their structural analogs produced by appropriate ligands such as AMP-PCP (non-hydrolyzable ATP analog) or metal fluoride compounds (phosphate analogs), and their crystal structures were solved at the atomic level (1522). The three cytoplasmic domains, N, P, and A, largely move and change their organization state during the transport cycle, and the changes are coupled with changes in the transport sites. Most remarkably, in the change from E1Ca2·AlF4·ADP (the transition state for E1PCa2 formation, E1PCa2·ADP·Mg) to E2·BeF3 (the ground state E2P·Mg) (2325), the A domain largely rotates by more than 90° approximately parallel to the membrane plane and associates with the P domain, thereby destroying the Ca2+ binding sites, and opening the lumenal gate, thus releasing Ca2+ into the lumen (see Fig. 2). E1PCa2·Ca·AMP-PN formed by CaAMP-PNP without Mg2+ is nearly the same as E1Ca2·AlF4·ADP and E1Ca2·CaAMP-PCP in their crystal structures (17, 18, 22).Open in a separate windowFIGURE 2.Structure of SERCA1a and its change during processing of phosphorylated intermediate. E1Ca2·AlF4·ADP (the transition state analog for phosphorylation E1PCa2·ADP·Mg) and E2·BeF3 (the ground state E2P analog (25)) were obtained from the Protein Data Bank (PDB accession code 1T5T (17) and 2ZBE (21), respectively). Cytoplasmic domains N (nucleotide binding), P (phosphorylation), and A (actuator), and 10 transmembrane helices (M1–M10) are indicated. The arrows on the domains, M1′ and M2 (Tyr122) in E1Ca2·AlF4·ADP, indicate their approximate motions predicted for E1PCa2·ADP·MgE2P·Mg. The phosphorylation site Asp351, TGES184 of the A domain, Arg198 (tryptic T2 site) on the Val200 loop (DPR198AV200NQD) of the A domain, and Thr242 (proteinase K site) on the A/M3-linker are shown. Seven hydrophobic residues gather in the E2P state to form the Tyr122-hydrophobic cluster (Y122-HC); Tyr122/Leu119 on the top part of M2, Ile179/Leu180/Ile232 of the A domain, and Val705/Val726 of the P domain. The overall structure of E1Ca2·AlF4·ADP is virtually the same as those of E1Ca2·CaAMP-PCP and E1PCa2·Ca·AMP-PN (17, 18, 22).Despite these atomic structures, yet unsolved is the structure of E1PCa2·Mg, the genuine physiological intermediate E1PCa2 with bound Mg2+ at the catalytic site without the nucleotide. Its stable structural analog has yet to be developed. E1PCa2·Mg is the major intermediate accumulating almost exclusively at steady state under physiological conditions. Its rate-limiting isomerization results in Ca2+ deocclusion/release producing E2P·Mg as a key event for Ca2+ transport. In E1Ca2·CaAMP-PCP, E1Ca2·AlF4·ADP, and E1PCa2·Ca·AMP-PN, the N and P domains are cross-linked and strongly stabilized by the bound nucleotide and/or Ca2+ at the catalytic site, thus they are crystallized (17, 18, 22). Kinetically, E1PCa2·Ca formed with CaATP is markedly stabilized due to Ca2+ binding at the catalytic Mg2+ site, and its isomerization to E2P is strongly retarded in contrast to E1PCa2·Mg (26, 27). Thus, the bound Ca2+ at the catalytic Mg2+ site likely produces a significantly different structural state from that with bound Mg2+.Therefore, it is now essential to develop a genuine E1PCa2·Mg analog without bound nucleotide and thereby gain further insight into the structural mechanism in the Ca2+ transport process. It is also crucial to further clarify the structural importance of Mg2+ as the physiological catalytic cation. In this study, we successfully developed the complex E1Ca2·BeFx, most probably E1Ca2·BeF3, as the E1PCa2·Mg analog by adding beryllium fluoride (BeFx) to the E1Ca2 state without any nucleotides. For its formation, Mg2+ binding at the catalytic site was required and Ca2+ substitution for Mg2+ was absolutely unfavorable, revealing a likely structural reason for its preference as the physiological cofactor. In E1Ca2·BeF3, two Ca2+ ions bound at the high affinity transport sites are occluded. It was also produced from E2·BeF3 by lumenal Ca2+ binding at the lumenally oriented low affinity transport sites, mimicking E2P·Mg + 2Ca2+E1PCa2·Mg. All properties of the newly developed E1Ca2·BeF3 fulfilled the requirements as the E1PCa2·Mg analog, and hence we were able to uncover the hitherto unknown nature of E1PCa2·Mg as well as structural events occurring in the phosphorylation and isomerization processes. Also, we successfully found the conditions that perfectly stabilize the E1Ca2·BeF3 complex.  相似文献   

14.
15.
Roles of hydrogen bonding interaction between Ser186 of the actuator (A) domain and Glu439 of nucleotide binding (N) domain seen in the structures of ADP-insensitive phosphorylated intermediate (E2P) of sarco(endo)plasmic reticulum Ca2+-ATPase were explored by their double alanine substitution S186A/E439A, swap substitution S186E/E439S, and each of these single substitutions. All the mutants except the swap mutant S186E/E439S showed markedly reduced Ca2+-ATPase activity, and S186E/E439S restored completely the wild-type activity. In all the mutants except S186E/E439S, the isomerization of ADP-sensitive phosphorylated intermediate (E1P) to E2P was markedly retarded, and the E2P hydrolysis was largely accelerated, whereas S186E/E439S restored almost the wild-type rates. Results showed that the Ser186-Glu439 hydrogen bond stabilizes the E2P ground state structure. The modulatory ATP binding at sub-mm∼mm range largely accelerated the EP isomerization in all the alanine mutants and E439S. In S186E, this acceleration as well as the acceleration of the ATPase activity was almost completely abolished, whereas the swap mutation S186E/E439S restored the modulatory ATP acceleration with a much higher ATP affinity than the wild type. Results indicated that Ser186 and Glu439 are closely located to the modulatory ATP binding site for the EP isomerization, and that their hydrogen bond fixes their side chain configurations thereby adjusts properly the modulatory ATP affinity to respond to the cellular ATP level.Sarcoplasmic reticulum Ca2+-ATPase (SERCA1a)2 is a representative member of P-type ion-transporting ATPases and catalyzes Ca2+ transport coupled with ATP hydrolysis (Fig. 1) (19). In the catalytic cycle, the enzyme is activated by binding of two Ca2+ ions at the transport sites (E2 to E1Ca2, steps 1–2) and then autophosphorylated at Asp351 with MgATP to form ADP-sensitive phosphoenzyme (E1P, step 3), which can react with ADP to regenerate ATP. Upon formation of this EP, the bound Ca2+ ions are occluded in the transport sites (E1PCa2). The subsequent isomeric transition to ADP-insensitive form (E2P) results in a change in the orientation of the Ca2+ binding sites and reduction of their affinity, and thus Ca2+ release into lumen (steps 4 and 5). Finally, the hydrolysis takes place and returns the enzyme into an unphosphorylated and Ca2+-unbound form (E2, step 6). E2P can also be formed from Pi in the presence of Mg2+ and the absence of Ca2+ by reversal of its hydrolysis.Open in a separate windowFIGURE 1.Reaction cycle of sarco(endo)plasmic reticulum Ca2+-ATPase.The cytoplasmic three domains N, A, and P largely move and change their organization states during the Ca2+ transport cycle (1022). These changes are linked with the rearrangements in the transmembrane helices. In the EP isomerization (loss of ADP sensitivity) and Ca2+ release, the A domain largely rotates (by ∼110° parallel to membrane plane), intrudes into the space between the N and P domains, and the P domain largely inclines toward the A domain. Thus in E2P, these domains produce the most compactly organized state (see Fig. 2 for the change E1Ca2·AlF4·ADP →E2·MgF42− as the model for the overall process E1PCa2·ADPE2·Pi).Open in a separate windowFIGURE 2.Structure of SERCA1a and formation of Ser186-Glu439 hydrogen bond between the A and N domains. The coordinates for the structures E1Ca2·AlF4·ADP, (the analog for the transition state of the phosphoryl transfer E1PCa2·ADP, left panel) and E2·MgF42− (E2·Pi analog (21), right panel) of Ca2+-ATPase were obtained from the Protein Data Bank (PDB accession code 1T5T and 1WPG, respectively (12, 14)). The arrows indicate approximate movements of the A and P domains in the change from E1Ca2·AlF4 ·ADP to E2·MgF42−. Ser186 and Glu439 are depicted as van der Waals spheres. These two residues form a hydrogen bond in E2·MgF42− (see inset). The phosphorylation site Asp351, two Ca2+ at the transport sites and ADP with AlF4 at the catalytic site in E1Ca2·AlF4·ADP, MgF42− bound at the catalytic site in E2·MgF42− are depicted. The TGES184 loop and Val200 loop of the A domain and Tyr122 on the top part of M2 are shown. These elements produce three interaction networks between A and P domains and M2 (Tyr122) in E2·MgF42− (2326). M1′ and M1-M10 are also indicated.We have found that the interactions between the A and P domains at the Val200-loop (Asp196-Asp203) with the residues of the P domain (Arg678/Glu680/Arg656/Asp660) (23) and at the Tyr122 hydrophobic cluster (2426) (see Fig. 2) play critical roles for Ca2+ deocclusion/release in E2PCa2E2P + 2Ca2+ after the loss of ADP sensitivity (E1PCa2 to E2PCa2 isomerization). The proper length of the A/M1′ linker is critical for inducing the inclining motion of the A and P domains for the Ca2+ deocclusion and release from E2PCa2 (27, 28). The importance of the interdomain interaction between Arg678 (P) and Asp203 (A) in stabilizing the E2P and E2 intermediates and its influence on modulatory ATP activation were pointed out by the mutation R678A (29). Regarding the N domain, the importance of Glu439 in the EP isomerization and E2P hydrolysis was previously noted by its alanine substitution, and possible importance of its interaction with Ser186 on the A domain has been suggested since Glu439 forms a hydrogen bond with Ser186 in the E2P analog structures (29) (see Fig. 2). The Darier disease-causing mutations of Ser186 of SERCA2b, S186P and S186F also alter the kinetics of the EP processing and its importance as the residue in the immediate vicinity of TGES184 has been pointed out (30, 31). Notably also, Glu439 is situated near the adenine binding pocket and its importance in the ATP binding and ATP-induced structural change have been shown (32, 33). In the structure E2(TG)AMPPCP (E2·ATP), Glu439 interacts with the modulatory ATP binding via Mg2+, and is involved in the acceleration of the Ca2+-ATPase cycle (16).Considering these critical findings on each of Glu439 and Ser186, it is crucial to reveal the role of the Ser186-Glu439 hydrogen-bonding interaction between the A and N domains in the EP processing and its ATP modulation (i.e. regulatory ATP-induced acceleration). We therefore made a series of mutants on both Ser186 and Glu439 including the swap substitution mutant, S186A, E439A, S186A/E439A, S186E, E439S, S186E/E439S, and explored their kinetic properties. Results showed that the Ser186-Glu439 hydrogen bond is critical for the stabilization of the E2P ground state structure, and possibly functioning as to make the E2P resident time long enough for Ca2+ release (E2PCa2E2P + 2Ca2+) thus to avoid its hydrolysis without Ca2+ release. Results also revealed that the side-chain configurations of Ser186 and Glu439 are fixed by their hydrogen bond, thereby conferring the proper modulatory ATP binding to occur at the cellular ATP level to accelerate the rate-limiting EP isomerization.  相似文献   

16.
Codon optimization was used to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli. The expressed enzyme cleaved β-carotene at its central double bond (15,15′) to yield two molecules of all-trans-retinal. The molecular mass of the native purified enzyme was ∼64 kDa as a dimer of 32-kDa subunits. The Km, kcat, and kcat/Km values for β-carotene as substrate were 37 μm, 3.6 min−1, and 97 mm−1 min−1, respectively. The enzyme exhibited the highest activity for β-carotene, followed by β-cryptoxanthin, β-apo-4′-carotenal, α-carotene, and γ-carotene in decreasing order, but not for β-apo-8′-carotenal, β-apo-12′-carotenal, lutein, zeaxanthin, or lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C35 seems to be essential for enzyme activity. The oxygen atom of retinal originated not from water but from molecular oxygen, suggesting that the enzyme was a β-carotene 15,15′-dioxygenase. Although the Blh protein and β-carotene 15,15′-monooxygenases catalyzed the same biochemical reaction, the Blh protein was unrelated to the mammalian β-carotene 15,15′-monooxygenases as assessed by their different properties, including DNA and amino acid sequences, molecular weight, form of association, reaction mechanism, kinetic properties, and substrate specificity. This is the first report of in vitro characterization of a bacterial β-carotene-cleaving enzyme.Vitamin A (retinol) is a fat-soluble vitamin and important for human health. In vivo, the cleavage of β-carotene to retinal is an important step of vitamin A synthesis. The cleavage can proceed via two different biochemical pathways (1, 2). The major pathway is a central cleavage catalyzed by mammalian β-carotene 15,15′-monooxygenases (EC 1.14.99.36). β-Carotene is cleaved by the enzyme symmetrically into two molecules of all-trans-retinal, and retinal is then converted to vitamin A in vivo (35). The second pathway is an eccentric cleavage that occurs at double bonds other than the central 15,15′-double bond of β-carotene to produce β-apo-carotenals with different chain lengths, which are catalyzed by carotenoid oxygenases from mammals, plants, and cyanobacteria (6). These β-apo-carotenals are degraded to one molecule of retinal, which is subsequently converted to vitamin A in vivo (2).β-Carotene 15,15′-monooxygenase was first isolated as a cytosolic enzyme by identifying the product of β-carotene cleavage as retinal (7). The characterization of the enzyme and the reaction pathway from β-carotene to retinal were also investigated (4, 8). The enzyme activity has been found in mammalian intestinal mucosa, jejunum enterocytes, liver, lung, kidney, and brain (5, 9, 10). Molecular cloning, expression, and characterization of β-carotene 15,15′-monooxygenase have been reported from various species, including chickens (11), fruit flies (12), humans (13), mice (14), and zebra fishes (15).Other proteins thought to convert β-carotene to retinal include bacterioopsin-related protein (Brp) and bacteriorhodopsin-related protein-like homolog protein (Blh) (16). Brp protein is expressed from the bop gene cluster, which encodes the structural protein bacterioopsin, consisting of at least three genes as follows: bop (bacterioopsin), brp (bacteriorhodopsin-related protein), and bat (bacterioopsin activator) (17). brp genes were reported in Haloarcula marismortui (18), Halobacterium sp. NRC-1 (19), Halobacterium halobium (17), Haloquadratum walsbyi, and Salinibacter ruber (20). Blh protein is expressed from the proteorhodopsin gene cluster, which contains proteorhodopsin, crtE (geranylgeranyl-diphosphate synthase), crtI (phytoene dehydrogenase), crtB (phytoene synthase), crtY (lycopene cyclase), idi (isopentenyl diphosphate isomerase), and blh gene (21). Sources of blh genes were previously reported in Halobacterium sp. NRC-1 (19), Haloarcula marismortui (18), Halobacterium salinarum (22), uncultured marine bacterium 66A03 (16), and uncultured marine bacterium HF10 49E08 (21). β-Carotene biosynthetic genes crtE, crtB, crtI, crtY, ispA, and idi encode the enzymes necessary for the synthesis of β-carotene from isopentenyl diphosphate, and the Idi, IspA, CrtE, CrtB, CrtI, and CrtY proteins have been characterized in vitro (2328). Blh protein has been proposed to catalyze or regulate the conversion of β-carotene to retinal (29, 30), but there is no direct proof of the enzymatic activity.In this study, we used codon optimization to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli, and we performed a detailed biochemical and enzymological characterization of the expressed Blh protein. In addition, the properties of the enzyme were compared with those of mammalian β-carotene 15,15′-monooxygenases.  相似文献   

17.
The oligomerization of β-lactoglobulin (βLg) has been studied extensively, but with somewhat contradictory results. Using analytical ultracentrifugation in both sedimentation equilibrium and sedimentation velocity modes, we studied the oligomerization of βLg variants A and B over a pH range of 2.5–7.5 in 100 mM NaCl at 25°C. For the first time, to our knowledge, we were able to estimate rate constants (koff) for βLg dimer dissociation. At pH 2.5 koff is low (0.008 and 0.009 s−1), but at higher pH (6.5 and 7.5) koff is considerably greater (>0.1 s−1). We analyzed the sedimentation velocity data using the van Holde-Weischet method, and the results were consistent with a monomer-dimer reversible self-association at pH 2.5, 3.5, 6.5, and 7.5. Dimer dissociation constants KD2-1 fell close to or within the protein concentration range of ∼5 to ∼45 μM, and at ∼45 μM the dimer predominated. No species larger than the dimer could be detected. The KD2-1 increased as |pH-pI| increased, indicating that the hydrophobic effect is the major factor stabilizing the dimer, and suggesting that, especially at low pH, electrostatic repulsion destabilizes the dimer. Therefore, through Poisson-Boltzmann calculations, we determined the electrostatic dimerization energy and the ionic charge distribution as a function of ionic strength at pH above (pH 7.5) and below (pH 2.5) the isoelectric point (pI∼5.3). We propose a mechanism for dimer stabilization whereby the added ionic species screen and neutralize charges in the vicinity of the dimer interface. The electrostatic forces of the ion cloud surrounding βLg play a key role in the thermodynamics and kinetics of dimer association/dissociation.  相似文献   

18.
Serpins inhibit serine proteases by mechanically disrupting the protease active site. The protease first reacts with the serpin''s reactive center loop (RCL) to form an acylenzyme. Then the RCL inserts into a β-sheet in the body of the serpin, translocating the attached protease ∼70 Å and deforming the protease active site, thereby trapping the acylenzyme. Loop insertion (∼1 s−1) is an order of magnitude slower than hydrolysis of a typical substrate acylenzyme (∼50 s−1), indicating that the protease is inhibited during translocation. We have previously trapped a partially translocated covalent complex of rat trypsin and α1-proteinase inhibitor (EpartI*) resulting from attractive interactions between cationic dyes and anionic rat trypsin. Here, using single pair Förster resonance energy transfer, we demonstrate that EpartI* is a metastable complex that can dissociate to free protease and cleaved serpin (I*) as well as convert to the canonical fully translocated complex EfullI*. The partitioning between these two pathways is pH dependent, with conversion favored at low pH and dissociation favored at high pH. The short lifetime of EpartI* (∼3 h at pH 7.4) and the pH dependence of EpartI* dissociation suggest that, unlike in EfullI*, the catalytic triad is intact in EpartI*. These results also demonstrate that interactions between target proteases and the body of the serpin can hinder protease translocation leading to short-lived covalent complexes.  相似文献   

19.
Internal chloride activity, ai Cl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. ai Cl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and E Cl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused ai Cl to increase at such a rate that 30–80 min after cooling began, E Cl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused ai Cl to decline, and E Cl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of ai Cl. Upon return to control seawater, ai Cl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号