首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to discriminate between different cations efficiently is essential for the proper physiological functioning of many membrane transport proteins. One obvious mechanism of ion selectivity is when a binding site is structurally constrained by the protein architecture and its geometry is precisely adapted to fit an ion of a given size. This mechanism is not effective in the case of flexible protein binding sites that are able to deform structurally or to adapt to a bound ion. In this study, the concept of nontrivial ion selectivity arising in a highly flexible protein binding site conceptually represented as a microdroplet of ligands confined to a small volume is explored. The environment imposed by the spatial confinement is a critical feature of the reduced models. A large number of reduced binding site models (1077) comprising typical ion-coordinating ligands (carbonyl, hydroxyl, carboxylate, water) are constructed and characterized for Na+/K+ and Ca2+/Ba2+ size selectivity using free energy perturbation molecular dynamics simulations. Free energies are highly correlated with the sum of ion-ligand and ligand-ligand mean interactions, but the relative balance of those two contributions is different for K+-selective and Na+-selective binding sites. The analysis indicates that both the number and the type of ligands are important factors in ion selectivity.  相似文献   

2.
3.
The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).  相似文献   

4.
The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family.  相似文献   

5.
Na+/K+ -ATPase, reconstituted into phospholipid vesicles, has been used to study the localisation of binding sites of ligands involved in the phosphorylation reaction. Inside-out oriented Na+/K+ -ATPase molecules are the only population in this system, which can be phosphorylated, as the rightside-out oriented as well as the non-incorporated enzyme molecules are inhibited by ouabain. In addition, the right-side-out oriented Na+/K+ -ATPase molecules have their ATP binding site intravesicularly and are thus not accessible to substrate added to the extravesicular medium. Functional binding sites for the following ligands have been demonstrated: (i) Potassium, acting at the extracellular side with high affinity (stimulating the dephosphorylation rate of the E2P conformation) and low affinity (inducing the non-phosphorylating E2K complex). (ii) Potassium, acting at the cytoplasmic side with both high and low affinity. The latter sites are also responsible for the formation of an E2K complex and complete with Na+ for its binding sites. (iii) Sodium at the cytoplasmic side responsible for stimulation of the phosphorylation reaction. (iv) Sodium (and amine buffers) at the extracellular side enhancing the phosphorylation level of Na+/K+ -ATPase where choline chloride has no effect. (v) Magnesium at the cytoplasmic side, stimulating the phosphorylation reaction and inhibiting it above optimal concentrations.  相似文献   

6.
The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters and controls dopamine (DA) homeostasis by mediating Na+- and Cl-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagenesis to investigate the mechanistic relationship between DAT ion binding sites and transporter conductances. In Li+, DAT displayed a cocaine-sensitive cation leak current ∼10-fold larger than the substrate-induced current in Na+. Mutation of Na+ coordinating residues in the first (Na1) and second (Na2) binding sites suggested that the Li+ leak depends on Li+ interaction with Na2 rather than Na1. DA caused a marked inhibition of the Li+ leak, consistent with the ability of the substrate to interact with the Li+-occupied state of the transporter. The leak current in Li+ was also potently inhibited by low millimolar concentrations of Na+, which according to our mutational data conceivably depended on high affinity binding to Na1. The Li+ leak was further regulated by Cl that most likely increases Li+ permeation by allosterically lowering Na2 affinity. Interestingly, mutational lowering of Na2 affinity by substituting Asp-420 with asparagine dramatically increased cation permeability in Na+ to a level higher than seen in Li+. In addition to reveal a functional link between the bound Cl and the cation bound in the Na2 site, the data support a key role of Na2 in determining cation permeability of the transporter and thereby possibly in regulating the opening probability of the inner gate.  相似文献   

7.
To understand the thermodynamic exclusion of Na+ relative to K+ from the S2 site of the selectivity filter, the distribution PX(ɛ) (X = K+ or Na+) of the binding energy (ɛ) of the ion with the channel is analyzed using the potential distribution theorem. By expressing the excess chemical potential of the ion as a sum of mean-field 〈ɛ〉 and fluctuation μexflux,X contributions, we find that selectivity arises from a higher value of μflux,Na+ex relative to μflux,K+ex. To understand the role of site-site interactions on μexflux,X, we decompose PX(ɛ) into n-dependent distributions, where n is the number of ion-coordinating ligands within a distance λ from the ion. For λ comparable to typical ion-oxygen bond distances, investigations building on this multistate model reveal an inverse correlation between favorable ion-site and site-site interactions: the ion-coordination states that most influence the thermodynamics of the ion are also those for which the binding site is energetically less strained and vice versa. This correlation motivates understanding entropic effects in ion binding to the site and leads to the finding that μexflux,X is directly proportional to the average site-site interaction energy, a quantity that is sensitive to the chemical type of the ligand coordinating the ion. Increasing the coordination number around Na+ only partially accounts for the observed magnitude of selectivity; acknowledging the chemical type of the ion-coordinating ligand is essential.  相似文献   

8.
Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na+ and K+ gradients across the plasma membrane by exchanging three intracellular Na+ ions against two extracellular K+ ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na+ and K+ ions, a third Na+-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na+ to the extracellular side. In the absence of extracellular Na+ and K+, Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive “leak” current. We investigated the relationship between the third Na+ binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na+ affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na+ and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na+ ions share a high field access channel between the extracellular solution and the third Na+ binding site.  相似文献   

9.
10.
Voltage-gated potassium (K+) channels are multi-ion pores. Recent studies suggest that, similar to calcium channels, competition between ionic species for intrapore binding sites may contribute to ionic selectivity in at least some K+ channels. Molecular studies suggest that a putative constricted region of the pore, which is presumably the site of selectivity, may be as short as one ionic diameter in length. Taken together, these results suggest that selectivity may occur at just a single binding site in the pore. We are studying a chimeric K+ channel that is highly selective for K+ over Na+ in physiological solutions, but conducts Na+ in the absence of K+. Na+ and K+ currents both display slow (C-type) inactivation, but had markedly different inactivation and deactivation kinetics; Na+ currents inactivated more rapidly and deactivated more slowly than K+ currents. Currents carried by 160 mM Na+ were inhibited by external K+ with an apparent IC50 <30 μM. K+ also altered both inactivation and deactivation kinetics of Na+ currents at these low concentrations. In the complementary experiment, currents carried by 3 mM K+ were inhibited by external Na+, with an apparent IC50 of ∼100 mM. In contrast to the effects of low [K+] on Na+ current kinetics, Na+ did not affect K+ current kinetics, even at concentrations that inhibited K+ currents by 40–50%. These data suggest that Na+ block of K+ currents did not involve displacement of K+ from the high affinity site involved in gating kinetics. We present a model that describes the permeation pathway as a single high affinity, cation-selective binding site, flanked by low affinity, nonselective sites. This model quantitatively predicts the anomalous mole fraction behavior observed in two different K+ channels, differential K+ and Na+ conductance, and the concentration dependence of K+ block of Na+ currents and Na+ block of K+ currents. Based on our results, we hypothesize that the permeation pathway contains a single high affinity binding site, where selectivity and ionic modulation of gating occur.  相似文献   

11.
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.  相似文献   

12.
In aqueous media, muscle pyruvate kinase is highly selective for K+ over Na+. We now studied the selectivity of pyruvate kinase in water/dimethylsulfoxide mixtures by measuring the activation and inhibition constants of K+ and Na+, i.e. their binding to the monovalent and divalent cation binding sites of pyruvate kinase, respectively [Melchoir J.B. (1965) Biochemistry 4, 1518-1525]. In 40% dimethylsulfoxide the K0.5 app for K+ and Na+ were 190 and 64-fold lower than in water. Ki app for K+ and Na+ decreased 116 and 135-fold between 20 and 40% dimethylsulfoxide. The ratios of Ki app/K0.5 app for K+ and Na+ were 34-3.5 and 3.3-0.2, respectively. Therefore, dimethylsulfoxide favored the partition of K+ and Na+ into the monovalent and divalent cation binding sites of the enzyme. The kinetics of the enzyme at subsaturating concentrations of activators show that K+ and Mg2+ exhibit high selectivity for their respective cation binding sites, whereas when Na+ substitutes K+, Na+ and Mg2+ bind with high affinity to their incorrect sites. This is evident by the ratio of the affinities of Mg2+ and K+ for the monovalent cation binding site, which is close to 200. For Na+ and Mg2+ this ratio is approximately 20. Therefore, the data suggest that K+ induces conformational changes that prevent the binding of Mg2+ to the monovalent cation binding site. Circular dichroism spectra of the enzyme and the magnitude of the transfer and apparent binding energies of K+ and Na+ indicate that structural arrangements of the enzyme induced by dimethylsulfoxide determine the affinities of pyruvate kinase for K+ and Na+.  相似文献   

13.
CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.  相似文献   

14.
Vibrio cholerae is motile by its polar flagellum, which is driven by a Na+-conducting motor. The stators of the motor, composed of four PomA and two PomB subunits, provide access for Na+ to the torque-generating unit of the motor. To characterize the Na+ pathway formed by the PomAB complex, we studied the influence of chloride salts (chaotropic, Na+, and K+) and pH on the motility of V. cholerae. Motility decreased at elevated pH but increased if a chaotropic chloride salt was added, which rules out a direct Na+ and H+ competition in the process of binding to the conserved PomB D23 residue. Cells expressing the PomB S26A/T or D42N variants lost motility at low Na+ concentrations but regained motility in the presence of 170 mM chloride. Both PomA and PomB were modified by N,N′-dicyclohexylcarbodiimide (DCCD), indicating the presence of protonated carboxyl groups in the hydrophobic regions of the two proteins. Na+ did not protect PomA and PomB from this modification. Our study shows that both osmolality and pH have an influence on the function of the flagellum from V. cholerae. We propose that D23, S26, and D42 of PomB are part of an ion-conducting pathway formed by the PomAB stator complex.  相似文献   

15.
Aqueous exposure of critical residues in the selectivity region of voltage gated Na+ channels was studied by cysteine-scanning mutagenesis at three positions in each of the SS2 segments of domains III (D3) and IV (D4) of the human heart Na+ channel. Ionic currents were modified by charged cysteine-specific methanethiosulfonate (MTS) reagents, (2-aminoethyl)methanethiosulfonate (MTSEA+) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) in all six of the Cys-substituted channels, including Trp → Cys substitutions at homologous positions in D3 and D4 that were predicted in secondary structure models to have buried side chains. Furthermore, in the absence of MTS modification, each of the Cys mutants showed a reduction in tetrodotoxin (TTX) block by a factor >102. Cysteine substitution without MTS modification abolished the alkali metal ion selectivity in K1418C (D3), but not in A1720C (the corresponding position in D4) suggesting that the lysine but not the alanine side chains contribute to selectivity even though both were exposed. Neither position responded to MTSES suggesting that these residues occupy either a size- or charge-restricted region of the pore. By contrast, MTSES markedly increased, and MTSEA+ markedly decreased conductance of D1713C (D4) suggesting that the acidic side chain of Asp1713 acts electrostatically in an unrestricted region. These results suggest that Lys1418 lies in a restricted region favorable to cations, whereas Asp1713 is at a more peripheral location in the Na+ channel pore. Received: 8 May 1996/Revised: 15 August 1996  相似文献   

16.
Potassium channels display a high conservation of sequence of the selectivity filter (SF), yet nature has designed a variety of channels that present a wide range of absolute rates of K+ permeation. In KcsA, the structural archetype for K channels, under physiological concentrations, two K+ ions reside in the SF in configurations 1,3 (up state) and 2,4 (down state) and ion conduction is believed to follow a throughput cycle involving a transition between these states. Using free-energy calculations of KcsA, Kv1.2, and mutant channels, we show that this transition is characterized by a channel-dependent energy barrier. This barrier is strongly influenced by the charges partitioned along the sequence of each channel. These results unveil therefore how, for similar structures of the SF, the rate of K+ turnover may be fine-tuned within the family of potassium channels.  相似文献   

17.
Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants.  相似文献   

18.
Charge movement by the Na/K pump in Xenopus oocytes   总被引:4,自引:1,他引:3  
Pre-steady-state transient currents (1986. Nakao, M., and D. C. Gadsby. Nature [Lond.]. 323:628-630) mediated by the Na/K pump were measured under conditions for Na/Na exchange (K-free solution) in voltage- clamped Xenopus oocytes. Signal-averaged (eight times) current records obtained in response to voltage clamp steps over the range -160 to +60 mV after the addition of 100 microM dihydroouabain (DHO) or removal of external Na (control) were subtracted from test records obtained before the solution change. A slow component of DHO- or Na-sensitive difference current was consistently observed and its properties were analyzed. The quantity of charge moved was well described as a Boltzmann function of membrane potential with an apparent valence of 1.0. The relaxation rate of the current was fit by the sum of an exponentially voltage-dependent reverse rate coefficient plus a voltage- independent forward rate constant. The quantity of charge moved at the on and off of each voltage pulse was approximately equal except at extreme negative values of membrane potential where the on charge tended to be less than the off. The midpoint voltage of the charge distribution function (Vq) was shifted by -24.8 +/- 1.7 mV by changing the external [Na] in the test condition from 90 to 45 mM and by +14.7 +/- 1.7 mV by changing the test [Na] from 90 to 120 mM. A pseudo three- state model of charge translocation is discussed in which Na+ is bound and occluded at the internal face of the enzyme and is released into an external-facing high field access channel (ion well). The model predicts a shift of the charge distribution function to more hyperpolarized potentials as extracellular [Na] is lowered; however, several features of the data are not predicted by the model.  相似文献   

19.
The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.  相似文献   

20.
The patch-clamp technique was used to study the properties and the density of conducting K and Na channels in the apical membrane of rat cortical collecting tubule. The predominant K channel observed in cell- attached patches (SK channels) had an outward single-channel conductance (with LiCl in the pipette) of 10 pS. The inward conductance (with KCl in the pipette) was 42 pS. The channel had a high open probability that increased with depolarization. Kinetic analysis indicated the presence of a single open state and two closed states. Increasing K intake by maintaining animals on a high K diet for 12-16 d increased the number of SK channels per patch by threefold (0.7- 2.0/patch) over control levels. In addition, conducting Na-selective channels, which were not observed in control animals, were seen at low density (0.5/patch). These channels had properties similar to those observed when the animals were on a low Na diet, except that the mean open probability (0.84) was higher. In other experiments, the whole- cell patch clamp technique was used to measure Na channel activity (as amiloride-sensitive current, INa) and Na pump activity (as ouabain- sensitive current, Ipump). In animals on a high K diet, INa was greater than in controls but much less than in rats on a low Na diet. Ipump was greater after K loading than in controls or Na-depleted animals. These K diet-dependent effects were not accompanied by a significant increase in plasma aldosterone concentrations. To further investigate the relationship between K channel activity and mineralocorticoids, rats were maintained on a low Na diet to increase endogenous aldosterone secretion. Under these conditions, no increase in SK channel density was observed, although there was a large increase in the number of Na channels (to 2.7/patch). Aldosterone was also administered exogenously through osmotic minipumps. As with the low Na diet, there was no change in the density of conducting SK channels, although Na channel activity was induced. These results suggest that SK channels, Na channels and Na/K pumps are regulated during changes in K intake by factors other than aldosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号