首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pressure-dependent diffusion and partitioning of single lipid fluorophores in DMPC and DPPC monolayers were investigated with the use of a custom-made monolayer trough mounted on a combined fluorescence correlation spectroscopy (FCS) and wide-field microscopy setup. It is shown that lipid diffusion, which is essential for the function of biological membranes, is heavily influenced by the lateral pressure and phase of the lipid structure. Both of these may change dynamically during, e.g., protein adsorption and desorption processes. Using FCS, we measured lipid diffusion coefficients over a wide range of lateral pressures in DMPC monolayers and fitted them to a free-area model as well as the direct experimental observable mean molecular area. FCS measurements on DPPC monolayers were also performed below the onset of the phase transition (Π < 5 mN/m). At higher pressures, FCS was not applicable for measuring diffusion coefficients in DPPC monolayers. Single-molecule fluorescence microscopy and differential scanning calorimetry clearly showed that this was due to heterogeneous partitioning of the lipid fluorophores in condensed phases. The results were compared with dye partitioning in giant lipid vesicles. These findings are significant in relation to the application of lipid fluorophores to study diffusion in both model systems and biological systems.  相似文献   

2.
Fluorescent probes in biological systems are sensitive to environmental polarity by virtue of their response to the reaction field created by polarization of the dielectric medium. Classically, fluorophore solvatochromism is analyzed in terms of the Lippert equation and later variants, all of which rely upon the original reaction field of Onsager. A recent survey of the solvent dependence of EPR spin-label probes, which are responsive solely to the reaction field in the ground state without the complication of excited states, shows that the reaction field of Block and Walker performs best in describing the polarity dependence. In this model, the step-function transition to the bulk dielectric medium used by Onsager is replaced by a graded transition. Analysis of the Stokes shifts for representative fluorescent membrane probes, such as PRODAN, DANSYL, and anthroyl fatty acid, reveals that, of several different reaction fields (including that of Onsager), the Block-Walker model best describes the dependence on solvent dielectric constant and refractive index for the different probes simultaneously. This is after full allowance is made for all contributions involving polarizability of the fluorophore, a point that is frequently neglected or treated incorrectly in studies using biological fluorescent probes. By using the full range of polar and apolar solvents, it is then possible to establish a common reference for the polarity dependence of different fluorophores and to relate this also to the polarity dependence of biologically relevant spin-label EPR probes. An important application is calibration of the transmembrane polarity profile recorded by fluorescent probes in terms of the high-resolution profile obtained from site-specifically spin-labeled lipid chains.  相似文献   

3.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5 -), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier.  相似文献   

4.
Steady-state polarization-resolved fluorescence imaging is used to analyze the molecular orientational order behavior of rigidly labeled major histocompatibility complex class I (MHC I) proteins and lipid probes in cell membranes of living cells. These fluorescent probes report the orientational properties of proteins and their surrounding lipid environment. We present a statistical study of the molecular orientational order, modeled as the width of the angular distribution of the molecules, for the proteins in the cell endomembrane and plasma membrane, as well as for the lipid probes in the plasma membrane. We apply this methodology on cells after treatments affecting the actin and microtubule networks. We find in particular opposite orientational order changes of proteins and lipid probes in the plasma membrane as a response to the cytoskeleton disruption. This suggests that MHC I orientational order is governed by its interaction with the cytoskeleton, whereas the plasma membrane lipid order is governed by the local cell membrane morphology.  相似文献   

5.
Russian Journal of Bioorganic Chemistry - Rhodamine derivatives are heterocyclic compound, related to the fluorescent probe having a profound application in the field of biotechnology. Herein, we...  相似文献   

6.
The focal adhesion protein vinculin (1066 residues) can be separated into a 95-kDa head and a 30-kDa tail domain. Vinculin's lipid binding sites localized on the tail, helix 3 (residues 944-978) and the unstructured C-terminal arm (residues 1052-1066, the so-called lipid anchor), influence focal adhesion turnover and are important for cell migration and adhesion. Using magnetic tweezers, we characterized the cell mechanical behavior in mouse embryonic fibroblast (MEF)-vin(−/−) cells transfected with EGFP-linked-vinculin deficient of the lipid anchor (vinΔC, residues 1-1051). MEF-vinΔC cells incubated with fibronectin-coated paramagnetic beads were less stiff, and more beads detached during these experiments compared to MEF-rescue cells. Cells expressing vinΔC formed fewer focal contacts as determined by confocal microscopy. Two-dimensional traction measurements showed that MEF-vinΔC cells generate less force compared to rescue cells. Attenuated traction forces were also found in cells that expressed vinculin with point mutations (R1060 and K1061 to Q) of the lipid anchor that impaired lipid binding. However, traction generation was not diminished in cells that expressed vinculin with impaired lipid binding caused by point mutations on helix 3. Mutating the src-phosphorylation site (Y1065 to F) resulted in reduced traction generation. These observations show that both the lipid binding and the src-phosphorylation of vinculin's C-terminus are important for cell mechanical behavior.  相似文献   

7.
Ethanol has a profound impact on biological systems and is moreover used in various medical and nonmedical applications. Its interaction with the lipid part of biological membranes has been the subject of intensive studies, but surprisingly, to our knowledge, no study has examined the influence of ethanol on lipid bilayer nanomechanics. We performed atomic force microscopy-based measurements to assess the influence of ethanol on the nanomechanical properties of fluid supported lipid bilayers. Ethanol significantly reduces membrane stability, bilayer thickness, Young’s modulus, area stretch modulus, and bending stiffness. Altogether, our data suggest that ethanol addition to supported lipid bilayers supports both the hydrophobic and the hydrophilic permeation pathways by a decrease of bilayer thickness and reduced stability, respectively.  相似文献   

8.
Uptake and Compartmentation of Fluorescent Probes by Plant Cells   总被引:6,自引:0,他引:6  
Several fluorescent compounds are now being used as probes forstudying plant transport processes. This review considers thepotential mechanisms of uptake of such probes with particularemphasis on their subsequent compartmentation within the cell.Physico-chemical parameters, such as the dissociation constant(pKa) and polarity (log kow) of the dye molecule provide importantguides as to the likely permeability of the plasmalemma to differentfluorochromes and an ion-trap mechanism may explain the accumulationof many fluorescent probes by plant cells. However, physico-chemicalparameters alone do not always explain the subsequent compartmentationof fluorescent probes within the cell. Evidence is accumulatingthat many anionic fluorescent probes may cross the plasmalemmain the undissociated state, followed by carrier-mediated transportof the anion across the tonoplast. In the specialized case ofthe highly dissociated dye, Lucifer Yellow CH (LYCH), the physico-chemicalproperties of the molecule would predict that it should be unableto cross membranes. Despite this, there have been several reportsof the movement of LYCH from the apoplast to the vacuole ofplant cells. Fluid-phase endocytosis has been implicated inthe vacuolar accumulation of LYCH and also a range of high-molecularweight, purified fluorescent conjugates. This evidence is discussedin the light of some reports that membrane-impermeant dyes,including LYCH, may cross the tonoplast following their microinjectioninto the cytoplasm.  相似文献   

9.
10.
《Biophysical journal》2020,118(1):117-127
We have developed probes based on the bacterial periplasmic glutamate/aspartate binding protein with either an endogenously fluorescent protein or a synthetic fluorophore as the indicator of glutamate binding for studying the kinetic mechanism of glutamate binding. iGluSnFR variants termed iGluh, iGlum, and iGlul cover a broad range of Kd-s (5.8 μM and 2.1 and 50 mM, respectively), and a novel fluorescently labeled indicator, Fl-GluBP, has a Kd of 9.7 μM. The fluorescence response kinetics of all the probes are consistent with a two-step mechanism involving ligand binding and isomerization either of the apo or the ligand-bound binding protein. Although the previously characterized ultrafast indicators iGluu and iGluf had monophasic fluorescence enhancement that occurred in the rate limiting isomerization step, the sensors described here all have biphasic binding kinetics with fluorescence increases occurring both in the glutamate binding and the isomerization steps. For iGlum and iGlul, the data indicate prebinding conformational change followed by ligand binding. In contrast, for iGluh and Fl-GluBP, glutamate binding is followed by isomerization. Thus, the effects of structural heterogeneity introduced by single amino acid changes around the binding site on the kinetic path of interactions with glutamate are revealed. Remarkably, glutamate binding with a diffusion-limited rate constant to iGluh and Fl-GluBP is detected for the first time, hinting at the underlying mechanism of the supremely rapid activation of the highly homologous α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor by glutamate binding.  相似文献   

11.
《Biophysical journal》2020,118(8):1830-1837
Laurdan fluorescence, novel spectral fitting, and dynamic light scattering were combined to determine lateral lipid organization in mixed lipid membranes of the oxidized lipid, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC), and each of the three bilayer lipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). Second harmonic spectra were computed to determine the number of elementary emissions present. All mixtures indicated two emissions. Accordingly, spectra were fit to two log-normal distributions. Changes with PGPC mole fraction, XPGPC, of the area of the shorter wavelength line and of dynamic light scattering-derived aggregate sizes show that: DPPC and PGPC form component-separated mixed vesicles for XPGPC ≤ 0.2 and coexisting vesicles and micelles for XPGPC > 0.2 in gel and liquid-ordered phases and for all XPGPC in the liquid-disordered phase; POPC and PGPC form randomly mixed vesicles for XPGPC ≤ 0.2 and component-separated mixed vesicles for XPGPC > 0.2. DOPC and PGPC separate into vesicles and micelles. Component segregation is due to unstable inhomogeneous membrane curvature stemming from lipid-specific intrinsic curvature differences between mixing molecules. PGPC is inverse cone-shaped because its truncated tail with a terminal polar group points into the interface. It is similar to and mixes with POPC, also an inverse cone because of mobility of its unsaturated tail. PGPC is least similar to DOPC because mobilities of both unsaturated tails confer a cone shape to DOPC, and PGPC separates form DOPC. DPPC and PGPC do not mix in the liquid-disordered phase because mobility of both tails in this phase renders DPPC a cone. DPPC is a cylinder in the gel phase and of moderate similarity to PGPC and mixes moderately with PGPC.  相似文献   

12.
Local composition, structure, morphology, and phase are interrelated in lipid bilayer membranes. This gives us the opportunity to control one or more of these properties by manipulating others. We investigate theserelationships with combinations of simultaneous two-color widefield fluorescence imaging, three-dimensional rendering of vesicle domains, andmanipulation of the vesicle morphology via optical trapping and micropipetteaspiration. We describe methods to modulate, to measure, and to probe thelocal structure of model membranes through control of membrane curvature inliposomes.  相似文献   

13.
Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD) of Ci-VSP with a fluorescent protein (FP) pair. We quantitatively compared the three most advanced versions of these probes (two previously reported and one new variant), each involving a spectrally distinct tandem of FPs. Despite these different FP tandems and dissimilarities within the amino acid sequence linking the VSD to the FPs, the amplitude and kinetics of voltage dependent fluorescence changes were surprisingly similar. However, each of these fluorescent probes has specific merits when considering different potential applications.  相似文献   

14.
Unsaturated lipid oxidation is a fundamental process involved in different aspects of cellular bioenergetics; dysregulation of lipid oxidation is often associated with cell aging and death. To study how lipid oxidation affects membrane biophysics, we used a chlorin photosensitizer to oxidize vesicles of various lipid compositions and degrees of unsaturation in a controlled manner. We observed different shape transitions that can be interpreted as an increase in the area of the targeted membrane followed by a decrease. These area modifications induced by the chemical modification of the membrane upon oxidation were followed in situ by Raman tweezers microspectroscopy. We found that the membrane area increase corresponds to the lipids’ peroxidation and is initiated by the delocalization of the targeted double bonds in the tails of the lipids. The subsequent decrease of membrane area can be explained by the formation of cleaved secondary products. As a result of these area changes, we observe vesicle permeabilization after a time lag that is characterized in relation with the level of unsaturation. The evolution of photosensitized vesicle radius was measured and yields an estimation of the mechanical changes of the membrane over oxidation time. The membrane is both weakened and permeabilized by the oxidation. Interestingly, the effect of unsaturation level on the dynamics of vesicles undergoing photooxidation is not trivial and thus carefully discussed. Our findings shed light on the fundamental dynamic mechanisms underlying the oxidation of lipid membranes and highlight the role of unsaturations on their physical and chemical properties.  相似文献   

15.
16.
The properties of vesicle membranes prepared from 16:0-SM, 16:0-DHSM, or DPPC were characterized using steady-state and time-resolved fluorescence spectroscopy and different fluorescent reporter molecules. The acyl-chain region was probed using free and phospholipid-bound 1,6-diphenyl-1,3,5-hexatriene. 16:0-DHSM was found to be the more ordered than both DPPC and 16:0-SM 5°C below and above melting temperature. Interfacial properties of the phospholipid bilayers were examined using 6-dodecanoyl-2-dimethyl-aminonaphthalene (Laurdan), 6-propionyl-2-dimethyl-amino-naphthalene (Prodan), and dansyl-PE. Laurdan and Prodan reported that the two sphingomyelin (SM) membrane interfaces were clearly different from the DPPC membrane interface, whereas the two SM membrane interfaces had more similar properties (both in gel and liquid-crystalline phase). Prodan partition studies showed that membrane resistance to Prodan partitioning increased in the order: 16:0-SM < DPPC < 16:0-DHSM. The degree to which dansyl-PE is exposed to water reflects the structural properties of the membrane-water interface. By comparing the lifetime of dansyl-PE in water and deuterium oxide solution, we could show that the degree to which the dansyl moiety was exposed to water in the membranes increased in the order: 16:0-SM < DPPC < 16:0-DHSM. In conclusion, this study has shown that DHSM forms more ordered bilayers than acyl-chain matched SM or phosphatidylcholine, even in the liquid-crystalline state.  相似文献   

17.
When present in micromolar amounts on one side of phospholipid bilayer membranes, monazomycin (a positively charged, polyene-like antibiotic) induces dramatic voltage-dependent conductance effects. Voltage clamp records are very similar in shape to those obtained from the potassium conductance system of the squid axon. The steady-state conductance is proportional to the 5th power of the monazomycin concentration and increases exponentially with positive voltage (monazomycin side positive); there is an e-fold change in conductance per 4–6 mv. The major current-carrying ions are univalent cations. For a lipid having no net charge, steady-state conductance increases linearly with KCl (or NaCl) concentration and is unaffected by Ca++ or Mg++. The current-voltage characteristic which is normally monotonic in symmetrical salt solutions is converted by a salt gradient to one with a negative slope-conductance region, although the conductance-voltage characteristic is unaffected. A membrane treated with both monazomycin and the polyene antibiotic nystatin (which alone creates anion-selective channels) displays bistability in the presence of a salt gradient. Thus monazomycin and nystatin channels can exist in parallel. We believe that many monazomycin monomers (within the membrane) cooperate to form a multimolecular conductance channel; the voltage control of conductance arises from the electric field driving monazomycin molecules at the membrane surface into the membrane and thus affecting the number of channels that are formed.  相似文献   

18.
Biophysical Properties of Australia Antigen   总被引:13,自引:5,他引:13       下载免费PDF全文
Biophysical studies with Australia complement-fixing (CF) antigen showed it to be a particle with a buoyant density of 1.20 g/cm(3) in CsCl, a sedimentation coefficient of 110, and an average diameter of 25 nm. The CF antigen was not inactivated by ether, 1% deoxycholate, 1% Tween 80 or overnight heating at 56 C. The antigen was unstable when treated with 1% sodium dodecyl sulfate. A procedure is described for the isolation and partial purification of Australia antigen from serum by using isopycnic banding and rate separation techniques. Treatment of the 1.20 g/cm(3) Australia antigen with 1% Tween 80 yielded a minor peak of CF activity with a buoyant density of 1.39 g/cm(3) in CsCl.  相似文献   

19.
Abstract: Oligodendrocytes and Schwann cell-specific proteins are assembled with a highly ordered membrane lipid bilayer to the myelin sheath of axons, which functions as an insulator and allows rapid saltatory conduction. We approached the question of the function of the CNS and PNS myelin-specific galactospingolipids cerebrosides and sulfatides by generating a ceramide galactosyltransferase null allelic mouse line ( cgt −/−). Galactocerebroside- and sulfatide-deficient myelin loses its insulating properties and causes a severe dysmyelinosis that is incompatible with life. Here, we describe the biochemical and biophysical analysis of the myelin lipid bilayer of cgt −/− mice. The lipid composition of CNS and PNS myelin of cgt −/− mice is seriously perturbed and the sphingolipid biosynthetic pathway altered. Nonhydroxy and hydroxy fatty acid-substituted glycosylceramides (GlcC) are synthesized by oligodendrocytes and sulfated GlcC in addition in Schwann cells. The monogalactosyldiglyceride fraction is missing in the cgt −/− mouse. This new lipid composition can be correlated with the biophysical properties of the myelin sheath. The deficiency of galactocerebrosides and sulfatides leads to an increased fluidity, permeability, and impaired packing of the myelin lipid bilayer of the internodal membrane system. The loss of the two glycosphingolipid classes causes the breakdown of saltatory conductance of myelinated axons in the cgt −/− mouse.  相似文献   

20.
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号