首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the α-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.  相似文献   

2.
Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4-3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism.  相似文献   

3.
Molecular dynamics simulations have been performed to investigate the partitioning of the volatile anesthetic halothane from an aqueous phase into a coexisting hydrated bilayer, composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, with embedded alpha-helical peptide bundles based on the membrane-bound portions of the alpha- and delta-subunits, respectively, of nicotinic acetylcholine receptor. In the molecular dynamics simulations halothane molecules spontaneously partitioned into the DOPC bilayer and then preferentially occupied regions close to lipid headgroups. A single halothane molecule was observed to bind to tyrosine (Tyr-277) residue in the alpha-subunit, an experimentally identified specific binding site. The binding of halothane attenuated the local loop dynamics of alpha-subunit and significantly influenced global concerted motions suggesting anesthetic action in modulating protein function. Steered molecular dynamics calculations on a single halothane molecule partitioned into a DOPC lipid bilayer were performed to probe the free energy profile of halothane across the lipid-water interface and rationalize the observed spontaneous partitioning. Partitioned halothane molecules affect the hydrocarbon chains of the DOPC lipid, by lowering of the hydrocarbon tilt angles. The anesthetic molecules also caused a decrease in the number of peptide-lipid contacts. The observed local and global effects of anesthetic binding on protein motions demonstrated in this study may underlie the mechanism of action of anesthetics at a molecular level.  相似文献   

4.
We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function of the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity. At the lowest concentration achieved, of approximately one molecule per bundle, the halothane distribution became narrower and more peaked due to a component of ∼19Å width centered about the designed cavity. At higher concentrations, approximately six to seven molecules were found to be uniformly distributed along the length of the bundle, corresponding to approximately one molecule per heptad. Monolayers of the control peptide showed only the latter behavior, namely a uniform distribution along the length of the bundle irrespective of the halothane concentration over this range. The results provide insight into the nature of such weak binding when the dissociation constant is in the mM regime, relevant for clinical applications of anesthesia. They also demonstrate the suitability of both the model system and the experimental technique for additional work on the mechanism of general anesthesia, some of it presented in the companion parts II and III under this title.  相似文献   

5.
We investigated the effect of halothane on lipid and protein components of sarcoplasmic reticulum membranes isolated from pig trapezius muscle. We studied the relationships between the (Ca2(+)-Mg2+)-ATPase activity and the interaction of the anesthetic with lipid and protein moieties by means of EPR and fluorescence spectroscopic techniques. Our results clearly show that below 5 mumol per mg protein, halothane interacts mainly with the lipid components of the membrane. This interaction is shown to be localized in the central core of the phospholipid bilayer and to induce an increase of the membrane calcium permeability. The interaction with protein components only occurs at higher halothane concentrations and affects its conformational and functional states. These results are discussed with respect to new insights into diethylether-SR membrane interaction and to malignant hyperthermia syndrome in the pig.  相似文献   

6.
The structural features of volatile anesthetic binding sites on proteins are being examined with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Previous work has suggested that introducing a cavity into the hydrophobic core improves anesthetic binding affinity. The more polarizable methionine side chain was substituted for a leucine, in an attempt to enhance the dispersion forces between the ligand and the protein. The resulting bundle variant has an improved affinity (K(d) = 0.20 +/- 0.01 mM) for halothane binding, compared with the leucine-containing bundle (K(d) = 0.69 +/- 0.06 mM). Photoaffinity labeling with (14)C-halothane reveals preferential labeling of the W15 residue in both peptides, supporting the view that fluorescence quenching by bound anesthetic reports both the binding energetics and the location of the ligand in the hydrophobic core. The rates of amide hydrogen exchange were similar for the two bundles, suggesting that differences in binding affinity were not due to changes in protein stability. Binding of halothane to both four-alpha-helix bundle proteins stabilized the native folded conformations. Molecular dynamics simulations of the bundles illustrate the existence of the hydrophobic core, containing both W15 residues. These results suggest that in addition to packing defects, enhanced dispersion forces may be important in providing higher affinity anesthetic binding sites. Alternatively, the effect of the methionine substitution on halothane binding energetics may reflect either improved access to the binding site or allosteric optimization of the dimensions of the binding pocket. Finally, preferential stabilization of folded protein conformations may represent a fundamental mechanism of inhaled anesthetic action.  相似文献   

7.
To gain insights into the molecular level mechanism of drug action at the membrane site, we have carried out extensive molecular dynamics simulations of a model membrane in the presence of a volatile anesthetic using a coarse-grain model. Six different anesthetic (halothane)/lipid (dimyristoylphosphatidylcholine) ratios have been investigated, going beyond the low doses typical of medical applications. The volatile anesthetics were introduced into a preassembled fully hydrated 512-molecule lipid bilayer and each of the molecular dynamics simulations were carried out at ambient conditions, using the NPT ensemble. The area per lipid increases monotonically with the halothane concentration and the lamellar spacing decreases, whereas the lipid bilayer thickness shows no appreciable differences and only a slight increase upon addition of halothane. The density profiles of the anesthetic molecules display a bimodal distribution along the membrane normal with maxima located close to the lipid-water interface region. We have studied how halothane molecules fluctuate between the two maxima of the bimodal distribution and we observed a different mechanism at low and high anesthetic concentrations. Through the investigation of the reorientational motions of the lipid tails, we found that the anesthetic molecules increase the segmental order of the lipids close to the membrane surface.  相似文献   

8.
The distribution of 1H-pyrrolo[3,2-h]quinoline (PQ), 11H-dipyrido[2,3-a]carbazole (PC) and 7-azaindole (7AI) at a water/membrane interface has been investigated by molecular dynamics (MD) simulations. The MD study focused on favorable binding sites of the azaaromatic probes across a dipalmitoylphosphatidylcholine (DPPC) bilayer. Our simulations show that PQ and PC are preferably accommodated at the hydrocarbon core of the bilayer below the glycerol moiety. In addition, it is found that the hydrophobic aromatic parts of the probes are located inside a more ordered region of DPPC, consisting of hydrophobic lipid chains. In contrast to PQ and PC, 7AI is characterized by a broad distribution between a DPPC interface and water, so that the three preferable binding sites are found across a water/membrane interface. It is found that in the sequence 7AI-PQ-PC, due to the increase of the number of aromatic rings and, hence, the hydrophobic character of the probes, the depth of the probe localization is gradually shifted deeper inside the hydrocarbon core of the bilayer. We found that the probe-lipid hydrogen-bonding contributes weakly to the favorable localizations of the azaaromatic probes inside the DPPC bilayer, so that the probe localization is mainly driven by electrostatic dipole-dipole and van der Waals interactions.  相似文献   

9.
10.
A variety of experiments suggest that membrane proteins are important targets of anesthetic molecules, and that ion channels interact differently with anesthetics in their open and closed conformations. The availability of an open and a closed structural model for the KirBac1.1 potassium channel has made it possible to perform a comparative analysis of the interactions of anesthetics with the same channel in its open and closed states. To this end, all-atom molecular dynamics simulations supplemented by normal mode analysis have been employed to probe the interactions of the inhalational anesthetic halothane with both an open and closed conformer of KirBac1.1 embedded in a lipid bilayer. Normal mode analysis on the closed and open channel, in the presence and absence of halothane, reveals that the anesthetic modulates the global as well as the local dynamics of both conformations differently. In the case of the open channel, the observed reduction of flexibility of residues in the inner helices suggests a functional modification action of anesthetics on ion channels. In this context, preferential quenching of the aromatic residue motion and modulation of global dynamics by halothane may be seen as steps toward potentiating or favoring open state conformations. These molecular dynamics simulations provide the first insights into possible specific interactions between anesthetic molecules and ion channels in different conformations.  相似文献   

11.
Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (KD) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins.  相似文献   

12.
Derivatives of the fluorescent probes fluorescein and rhodamine specifically and covalently modify the highly reactive thiol (SH1) of myosin subfragment 1 (S1). Both probes develop circular dichroism (CD) upon modification of SH1 at the visible absorption band of the chromophore. A model system of chiral complexing agents (aromatic chiral amines) interacting with fluorescein in solvent develops a CD signal that mimics that produced by S1. The model system suggests that a specific interaction of the probe with an aromatic chiral residue in the SH1 binding pocket induces the CD signal. Several other spectroscopic signals, including absorption and fluorescence intensity and anisotropy, characterize the fluorescein or rhodamine binding to SH1. A coupled dipole method is adapted to interpret these spectroscopic signals in terms of the probe-S1 complex conformation. The computation of the orientation of the principal hydrodynamic frame (PHF) of S1 from its crystallographic -carbon backbone structure permits the known orientation of the probe in the PHF of S1 to further constrain the conformation of the probe-S1 complex. The coupled dipole interpretation of spectroscopic data combined with constraints relating the probe dipole orientation to the PHF of S1 determines the conformation of the probe-S1 complex. The methods developed here are applied to the spectroscopic signals from fluorescein or rhodamine in the SH1 binding site of S1 to obtain an atomic resolution model of the probe-S1 conformation [Ajtai and Burghardt, Biochemistry, 34 (1995) 15943–15952].  相似文献   

13.
Labelling of proteins with some extrinsic probe is unavoidable in molecular biology research. Particularly, spectroscopic studies in the optical region require fluorescence modification of native proteins by attaching polycyclic aromatic fluoroprobe with the proteins under investigation. Our present study aims to address the consequence of the attachment of a fluoroprobe at the protein surface in the molecular recognition of the protein by selectively small model receptor. A spectroscopic study involving apomyoglobin (Apo‐Mb) and cyclodextrin (CyD) of various cavity sizes as model globular protein and synthetic receptors, respectively, using steady‐state and picosecond‐resolved techniques, is detailed here. A study involving Förster resonance energy transfer, between intrinsic amino acid tryptophan (donor) and N, N‐dimethyl naphthalene moiety of the extrinsic dansyl probes at the surface of Apo‐Mb, precisely monitor changes in donor acceptor distance as a consequence of interaction of the protein with CyD having different cavity sizes (β and γ variety). Molecular modelling studies on the interaction of tryptophan and dansyl probe with β‐CyD is reported here and found to be consistent with the experimental observations. In order to investigate structural aspects of the interacting protein, we have used circular dichroism spectroscopy. Temperature‐dependent circular dichroism studies explore the change in the secondary structure of Apo‐Mb in association with CyD, before and after fluorescence modification of the protein. Overall, the study well exemplifies approaches to protein recognition by CyD as a synthetic receptor and offers a cautionary note on the use of hydrophobic fluorescent labels for proteins in biochemical studies involving recognition of molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We have previously shown that low levels of the volatile anesthetic halothane activate the Ca-ATPase in skeletal sarcoplasmic reticulum (SR), but inhibit the Ca-ATPase in cardiac SR. In this study, we ask whether the differential inhibition is due to (a) the presence of the regulatory protein phospholamban in cardiac SR, (b) different lipid environments in skeletal and cardiac SR, or (c) the different Ca-ATPase isoforms present in the two tissues. By expressing skeletal (SERCA 1) and cardiac (SERCA 2a) isoforms of the Ca-ATPase in Sf21 insect cell organelles, we found that differential anesthetic effects in skeletal and cardiac SR are due to differential sensitivities of the SERCA 1 and SERCA 2a isoforms to anesthetics. Low levels of halothane inhibit the SERCA 2a isoform of the Ca-ATPase, and have little effect on the SERCA 1 isoform. The biochemical mechanism of halothane inhibition involves stabilization of E2 conformations of the Ca-ATPase, suggesting direct anesthetic interaction with the ATPase. This study establishes a biochemical model for the mechanism of action of an anesthetic on a membrane protein, and should lead to the identification of anesthetic binding sites on the SERCA 1 and SERCA 2a isoforms of the Ca-ATPase.  相似文献   

15.
To understand further the weak molecular interactions between inhaled anesthetics and proteins, we studied the character and dynamic consequences of halothane binding to bovine serum albumin (BSA) and myoglobin using photoaffinity labeling and hydrogen-tritium exchange (HX). We find that halothane binds saturably and with submillimolar affinity to BSA, but either nonspecifically or with considerably lower affinity to myoglobin. Titration of halothane binding with guanidine hydrochloride suggested more protection of binding sites from solvent in BSA as compared with myoglobin. Protection factors for slowly exchanging albumin hydrogens are increased in a concentration-dependent manner by up to 27-fold with 10 mM halothane, whereas more rapidly exchanging groups of albumin hydrogens have either unaltered or decreased protection factors. Protection factors for slowly exchanging hydrogens in myoglobin are decreased by halothane, suggesting destabilization through binding to an intermediate or completely unfolded conformer. These results demonstrate the conformation dependence of halothane binding and clear dynamic consequences that correlate with the character of binding in these model proteins. Preferential binding and stabilization of different conformational states may underlie anesthetic-induced protein dysfunction, as well as provide an explanation for heterogeneity of action.  相似文献   

16.
Water molecules in hydrophobic biological cleft/cavities are of contemporary interest for the biomolecular structure and molecular recognition of hydrophobic ligands/drugs. Here, we have explored picosecond-resolved solvation dynamics of water molecules and associated polar amino acids in the hydrophobic cleft around Cys-34 position of Endogenous Serum Albumin (ESA). While site selective acrylodan labeling to Cys-34 allows us to probe solvation in the cleft, Förster resonance energy transfer (FRET) from intrinsic fluorescent amino acid Trp 214 to the extrinsic acrylodan probes structural integrity of the protein in our experimental condition. Temperature dependent solvation in the cleft clearly shows that the dynamics follows Arrhenius type behavior up to 60 °C, after which a major structural perturbation of the protein is evident. We have also monitored polarization gated dynamics of the acrylodan probe and FRET from Trp 214 to acrylodan at various temperatures. The dynamical behavior of the immediate environments around the probe acrylodan in the cleft has been compared with a model biomimetic cavity of a reverse micelle (w0 = 5). Using same fluorescent probe of acrylodan, we have checked the structural integrity of the model cavity at various temperatures using picosecond-resolved FRET from Trp to acrylodan in the cavity. We have also estimated possible distribution of donor-acceptor distances in the protein and reverse micelles. Our studies reveal that the energetics of the water molecules in the biological cleft is comparable to that in the model cavity indicating a transition from bound state to quasibound state, closely consistent with a recent MD simulation study.  相似文献   

17.
Yonkunas MJ  Xu Y  Tang P 《Biophysical journal》2005,89(4):2350-2356
The nature and the sites of interactions between anesthetic halothane and homodimeric Delta5-3-ketosteroid isomerase (KSI) are characterized by flexible ligand docking and confirmed by 1H-15N NMR. The dynamics consequence of halothane interaction and the implication of the dynamic changes to KSI function are studied by multiple 5-ns molecular dynamics simulations in the presence and absence of halothane. Both docking and MD simulations show that halothane prefer the amphiphilic dimeric interface to the hydrophobic active site of KSI. Halothane occupancy at the dimer interface disrupted the intersubunit hydrogen bonding formed either directly through side chains of polar residues or indirectly through the mediation of the interfacial water molecules. Moreover, in the presence of halothane, the exchange rate of the bound waters with bulk water was increased. Halothane perturbation to the dimer interface affected the overall flexibility of the active site. This action is likely to contribute to the halothane-induced reduction of the KSI activity. The allosteric halothane modulation of the dynamics-function relationship of KSI without direct competition at the enzymatic active sites may be generalized to offer a unifying explanation of anesthetic action on a diverse range of multidomain neuronal proteins that are potentially relevant to clinical general anesthesia.  相似文献   

18.
The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data.  相似文献   

19.
Membrane fusion is a crucial step in flavivirus infections and a potential target for antiviral strategies. Lipids and proteins play cooperative roles in the fusion process, which is triggered by the acidic pH inside the endosome. This acidic environment induces many changes in glycoprotein conformation and allows the action of a highly conserved hydrophobic sequence, the fusion peptide (FP). Despite the large volume of information available on the virus-triggered fusion process, little is known regarding the mechanisms behind flavivirus–cell membrane fusion. Here, we evaluated the contribution of a natural single amino acid difference on two flavivirus FPs, FLAG (98DRGWGNGCGLFGK110) and FLAH (98DRGWGNHCGLFGK110), and investigated the role of the charge of the target membrane on the fusion process. We used an in silico approach to simulate the interaction of the FPs with a lipid bilayer in a complementary way and used spectroscopic approaches to collect conformation information. We found that both peptides interact with neutral and anionic micelles, and molecular dynamics (MD) simulations showed the interaction of the FPs with the lipid bilayer. The participation of the indole ring of Trp appeared to be important for the anchoring of both peptides in the membrane model, as indicated by MD simulations and spectroscopic analyses. Mild differences between FLAG and FLAH were observed according to the pH and the charge of the target membrane model. The MD simulations of the membrane showed that both peptides adopted a bend structure, and an interaction between the aromatic residues was strongly suggested, which was also observed by circular dichroism in the presence of micelles. As the FPs of viral fusion proteins play a key role in the mechanism of viral fusion, understanding the interactions between peptides and membranes is crucial for medical science and biology and may contribute to the design of new antiviral drugs.  相似文献   

20.
Manderson GA  Johansson JS 《Biochemistry》2002,41(12):4080-4087
Currently, the mechanism by which anesthesia occurs is thought to involve the direct binding of inhaled anesthetics to ligand-gated ion channels. This hypothesis is being studied using four-alpha-helix bundles as model systems for the transmembrane domains of the natural "receptor" proteins. This study concerns the role in anesthetic binding played by aromatic side chains in the binding cavity of a four-alpha-helix bundle designed to assume a Rop-like fold. Specifically, the effect of the substitution W15Y on bundle structure, stability, and anesthetic binding energetics was investigated. No appreciable effect of substituting W for Y on the secondary structure or the thermodynamic stability of the four-alpha-helix bundle was identified. However, the substitution W15Y resulted in about 6- and 3-fold decreases in halothane and chloroform binding affinities, respectively. This effect may reflect weaker dipole-aromatic quadrupole interactions between the aromatic side chain and the anesthetic in the tyrosine-containing species, which possesses the smaller aromatic ring system. For these anesthetic binding proteins, this class of interaction occurs when the permanent nonspherical distribution of electrons in the aromatic ring systems interact with the weakly acidic CH group of the anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号