首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.  相似文献   

3.
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.  相似文献   

4.
Tethered particle experiments use light microscopy to measure the position of a micrometer-sized bead tethered to a microscope slide via an approximately micrometer-length polymer, to infer the behavior of the invisible polymer. Currently, this method is used to measure rate constants of DNA loop formation and breakdown mediated by repressor protein that binds to the DNA. We report a new technique for measuring these rates using a modified hidden Markov analysis that directly incorporates the diffusive motion of the bead, which is an inherent complication of tethered particle motion because it occurs on a timescale between the sampling frequency and the looping time. We compare looping lifetimes found with our method, which are consistent over a range of sampling frequencies, to those obtained via the traditional threshold-crossing analysis, which vary depending on how the raw data are filtered in the time domain. Our method does not involve such filtering, and so can detect short-lived looping events and sudden changes in looping behavior.  相似文献   

5.
In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such 'DNA looping' interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified ('diffusive') hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern.  相似文献   

6.
Telomeres and their changes in length throughout the life span of cells have been intensively investigated in different organisms. Telomere length is assumed to control replicative senescence in mammalian cells. However, only very few data are available on the developmental dynamics of plant telomeres. Here, changes of telomere length and DNA-protein structure of Arabidopsis thaliana telomeres were analysed in different stages of development, with the main focus resting on the transition from pre-senescent to senescent leaves. The lengths of the telomeres, ranging from ca. 2.0 to 6.5 kb, do not significantly change during plant development indicating that telomere length is not involved in differentiation and replicative senescence nor in post-mitotic senescence of A. thaliana. In dedifferentiated cultured cells a slight increase in length can be determined. The nucleoprotein structure of the telomeric DNA was investigated by gel mobility shift assays, with synthetic oligonucleotides and nuclear protein extracts derived from four defined stages of post-mitotic leaf senescence. In all four stages, a highly salt-resistant DNA-protein complex was formed with the double-stranded as well as with the single-stranded G-rich telomeric DNA. An additional DNA-protein complex was identified in nuclear protein extracts isolated from plants in the transition stage from pre-senescence to senescence. The protein components of the DNA-protein complexes were analysed on native PAGE and SDS-PAGE gels. A protein of 67 kDa (ATBP1) bound to the telomeric DNA in all developmental stages. An additional protein of merely 22 kDa (ATBP2) was associated via protein-protein interaction with ATBP1 to form a higher-order complex exclusively during the onset of senescence. DNA interaction of this higher-order protein complex seems to be restricted to double-stranded telomeric DNA. The defined period of ATBP1/ATBP2 complex formation with the telomeric DNA probably indicates that ATBP2 is involved in the onset of post-mitotic leaf senescence by either disturbing an established or establishing an additional function exhibited by the telomeres in the interphase nuclei.  相似文献   

7.
Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration.  相似文献   

8.
We describe a new electrophysiological technique called nonequilibrium response spectroscopy, which involves application of rapidly fluctuating (as high as 14 kHz) large-amplitude voltage clamp waveforms to ion channels. As a consequence of the irreversible (in the sense of Carnot) exchange of energy between the fluctuating field and the channel protein, the gating response is exquisitely sensitive to features of the kinetics that are difficult or impossible to adequately resolve by means of traditional stepped potential protocols. Here we focus on the application of dichotomous (telegraph) noise voltage fluctuations, a broadband Markovian colored noise that fluctuates between two values. Because Markov kinetic models of channel gating can be embedded within higher-dimensional Markov models that take into account the effects of the voltage fluctuations, many features of the response of the channels can be calculated algebraically. This makes dichotomous noise and its generalizations uniquely suitable for model selection and kinetic analysis. Although we describe its application to macroscopic ionic current measurements, the nonequilibrium response method can also be applied to gating and single channel current recording techniques. We show how data from the human cardiac isoform (hH1a) of the Na+ channel expressed in mammalian cells can be acquired and analyzed, and how these data reveal hidden aspects of the molecular kinetics that are not revealed by conventional methods.  相似文献   

9.
PicoGreen is a fluorescent probe that binds dsDNA and forms a highly luminescent complex when compared to the free dye in solution. This unique probe is widely used in DNA quantitation assays but has limited application in biophysical analysis of DNA and DNA-protein systems due to limited knowledge pertaining to its physical properties and characteristics of DNA binding. Here we have investigated PicoGreen binding to DNA to reveal the origin and mode of PicoGreen/DNA interactions, in particular the role of electrostatic and nonelectrostatic interactions in formation of the complex, as well as demonstrating minor groove binding specificity. Analysis of the fluorescence properties of free PicoGreen, the diffusion properties of PG/DNA complexes, and the excited-state lifetime changes upon DNA binding and change in solvent polarity, as well as the viscosity, reveal that quenching of PicoGreen in the free state results from its intramolecular dynamic fluctuations. On binding to DNA, intercalation and electrostatic interactions immobilize the dye molecule, resulting in a >1000-fold enhancement in its fluorescence. Based on the results of this study, a model of PicoGreen/DNA complex formation is proposed.  相似文献   

10.
A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.  相似文献   

11.
DNA origami shows tremendous promise as templates for the assembly of nano‐components and detection of molecular recognition events. So far, the method of choice for evaluating these structures has been atomic force microscopy (AFM), a powerful tool for imaging nanoscale objects. In most cases, tethered targets on DNA origami have proven to be highly effective samples for investigation. Still, while maximal assembly of the nanostructures might benefit from the greatest flexibility in the tether, AFM imaging requires a sufficient stability of the adsorbed components. The balance between the tether flexibility and sample stability is a major, poorly understood, concern in such studies. Here, we investigated the dependence of the tethering length on molecular capture events monitored by AFM. In our experiments, single biotin molecules were attached to DNA origami templates with various linker lengths of thymidine nucleotides, and their interaction with streptavidin was observed with AFM. Our results show that the streptavidin‐biotin complexes are easily detected with short tethered lengths, and that their morphological features clearly change with the tethering length. We identify the functionally useful tether lengths for these investigations, which are also expected to prove useful in the construction and further application of DNA origami in bio‐nanotechnology studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Three Markov models (Dayhoff, Proportional and Poisson models; Hasegawa et al., 1992a) for amino acid substitution during evolution were used for maximum likelihood analyses of proteins coded for in mitochondrial DNA in estimating a phylogenetic tree among human, bovine and murids (mouse and rat) with chicken as an outgroup. It turned out that Dayhoff model is the most appropriate model among the alternatives in approximating the amino acid substitutions of proteins coded for in mitochondrial DNA. In spite of the presence of the complete sequence data of mitochondrial genomes, we could not resolve the trichotomy among human, bovine and murids, probably because the time length separating two branching events among these three lines was short and because chicken is too distant from mammals to be used as an outgroup. It was suggested that the average substitution rate of amino acids coded for in mitochondrial DNA is lower along the bovine line than those along the human or murid lines. Advantages of amino acid sequence analysis over nucleotide sequence analysis in phylogenetic study were discussed.  相似文献   

13.
Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes’ genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.  相似文献   

14.
Davis WB  Bjorklund CC  Deline M 《Biochemistry》2012,51(14):3129-3142
The ability of DNA to transport positive charges, or holes, over long distances is well-established, but the mechanistic details of how this process is influenced by packaging into DNA-protein complexes have not been fully delineated. In eukaryotes, genomic DNA is packaged into chromatin through its association with the core histone octamer to form the nucleosome core particle (NCP), a complex whose structure can be modulated through changes in the local environment and the histone proteins. Because (i) varying the salt concentration and removing the histone tails influence the structure of the NCP in known ways and (ii) previous studies have shown that DNA hole transport (HT) occurs in the nucleosome, we have used our previously described 601 sequence NCPs to test the hypothesis that DNA HT dynamics can be modulated by structural changes in a DNA-protein complex. We show that at low salt concentrations there is a sharp increase in long-range DNA HT efficiency in the NCP as compared to naked DNA. This enhancement of HT can be negated by either removal of the histone tails at low salt concentrations or disruption of the interaction of the packaged DNA and the histone tails by increasing the buffer's ionic strength. Association of the histone tails with 601 DNA at low salt concentrations shifts the guanine damage spectrum to favor lesions like 8-oxoguanine in the NCP, most likely through modulation of the rate of the reaction of the guanine radical cation with oxygen. These experimental results indicate that for most genomic DNA, the influence of DNA-protein interactions on DNA HT will depend strongly on the level of protection of the DNA nucleobases from oxygen. Further, these results suggest that the oxidative damage arising from DNA HT may vary in different genomic regions depending on the presence of either euchromatin or heterochromatin.  相似文献   

15.
Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies.  相似文献   

16.
Comparative ab initio prediction of gene structures using pair HMMs   总被引:3,自引:0,他引:3  
We present a novel comparative method for the ab initio prediction of protein coding genes in eukaryotic genomes. The method simultaneously predicts the gene structures of two un-annotated input DNA sequences which are homologous to each other and retrieves the subsequences which are conserved between the two DNA sequences. It is capable of predicting partial, complete and multiple genes and can align pairs of genes which differ by events of exon-fusion or exon-splitting. The method employs a probabilistic pair hidden Markov model. We generate annotations using our model with two different algorithms: the Viterbi algorithm in its linear memory implementation and a new heuristic algorithm, called the stepping stone, for which both memory and time requirements scale linearly with the sequence length. We have implemented the model in a computer program called DOUBLESCAN. In this article, we introduce the method and confirm the validity of the approach on a test set of 80 pairs of orthologous DNA sequences from mouse and human. More information can be found at: http://www.sanger.ac.uk/Software/analysis/doublescan/  相似文献   

17.
Molecular motors couple chemical transitions to conformational changes that perform mechanical work in a wide variety of biological processes. Disruption of this coupling can lead to diseases, and therefore there is a need to accurately measure mechanochemical coupling in motors in both health and disease. Optical tweezers with nanometer spatial and millisecond temporal resolution have provided valuable insights into these processes. However, fluctuations due to Brownian motion can make it difficult to precisely resolve these conformational changes. One powerful analysis technique that has improved our ability to accurately measure mechanochemical coupling in motor proteins is ensemble averaging of individual trajectories. Here, we present a user-friendly computational tool, Software for Precise Analysis of Single Molecules (SPASM), for generating ensemble averages of single-molecule data. This tool utilizes several conceptual advances, including optimized procedures for identifying single-molecule interactions and the implementation of a change-point algorithm, to more precisely resolve molecular transitions. Using both simulated and experimental data, we demonstrate that these advances allow for accurate determination of the mechanics and kinetics of the myosin working stroke with a smaller set of data. Importantly, we provide our open-source MATLAB-based program with a graphical user interface that enables others to readily apply these advances to the analysis of their own data.  相似文献   

18.
Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model; (vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.
This is a PLOS Computational Biology Software Article.
  相似文献   

19.
R Gantt 《Mutation research》1987,183(1):75-87
Bulky adducts to DNA including DNA-protein crosslinks formed with trans-platinum(II)diammine-dichloride are repaired largely by the nucleotide excision pathway in mammalian cells. The discovery in this laboratory that cells deficient in nucleotide excision repair, i.e., SV40-virus transformed SV-XP20S cells, can efficiently repair DNA-protein crosslinks implicates a second pathway. In this report, details concerning this pathway are presented. DNA-protein crosslinks induced with 20 microM trans-platinum were assayed by the membrane alkaline elution procedure of Kohn. DNA replication was measured by CsCl gradient separation of newly synthesized DNA that had incorporated 5-bromodeoxyuridine. The following results indicate that this new repair pathway is associated with cell cycling: Whereas rapidly proliferating human cells deficient in excision repair (SV40 transformed XP20S, group A) are proficient in repair of DNA-protein crosslinks, the more slowly growing untransformed parent line is deficient but can complete repair after prolonged periods of 4-6 days, the approximate doubling time of the cell population. Either "used" culture medium or cycloheximide (1 microgram/ml) inhibits cell proliferation, protein synthesis, DNA replication and crosslink repair. In the presence of increasing concentrations of cycloheximide (0.01-5 micrograms/ml) the percent of DNA replication decreases and is essentially equivalent to the percent of crosslink repair. The following results indicate that this new repair pathway, though associated with cell cycling, is independent of DNA replication per se. The rates of DNA-protein crosslink repair and DNA replication are essentially the same in mouse L1210 cells rapidly proliferating in 20% serum supplement; however, to slower proliferation rates in 1% serum rate of crosslink repair is slower but differs from that of DNA replication. In the presence of aphidicolin (10 micrograms/ml) cells can repair DNA-protein crosslinks in virtually the complete absence of DNA replication, though the rate is slower in both nucleotide excision-proficient and -deficient cells. Thus, DNA replication is not essential for repair of DNA-protein crosslinks. Comparison of the kinetics of replication and DNA-protein crosslink repair of pulse-labeled indicates that, in the absence of metabolic inhibitors, repair of the crosslinks is independent of replication per se and, therefore, DNA recombination events are not involved in this repair process. We conclude, therefore, that the new repair pathway is not coupled with DNA replication but is with cell cycling.  相似文献   

20.
Auger-electron-emitting radioisotopes such as 125I produce DNA strand breaks within nanometer range of the decay site. Here we analyze these breaks in order to study changes in DNA conformation upon binding with cyclic AMP receptor protein (CRP) in solution. The clear difference we found in break frequency in the CRP-DNA complex, as compared to the naked DNA duplex, correlates with the increased distances between the deoxyriboses and the radioiodine atom caused by the CRP-induced kink observed in the cocrystal. Thus, we demonstrate that 125I radioprobing can be used to study fine conformational changes of DNA within DNA-protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号