首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluations of soil organic carbon (SOC) stocks are often based on assigning a carbon density to each one of a number of ecosystems or soil classes considered, using data from soil profiles within these categories. A better approach, in which the use of classification methods by which extrapolation of SOC data to larger areas is avoided, can only be used if enough data are available at a sufficiently small scale. Over 190 000 SOC measurements (0–24 cm) have been made in the Flemish cropland (the Northern part of Belgium) in the 1989–2000 period. These SOC data were grouped into 3‐year periods and as means plus standard deviation per (part of) community (polygons). This large dataset was used to calculate SOC stocks and their evolution with time, without data extrapolation. Using a detailed soil map, larger spatial groups of polygons were created based on soil texture and spatial location. Linear regression analysis showed that in the entire study area, SOC stocks had decreased or at best had remained stable. In total, a yearly decrease of 354 kton OC yr?1 was calculated, which corresponds with a net CO2 emission of 1238 kton CO2 yr?1. Specific regions with a high carbon sequestration potential were identified, based on SOC losses during the 1989–2000 period and the mean 1999 SOC content, compared to the average SOC content of soils in Flanders with a similar soil texture. When restoring the SOC stocks to their 1990 level, we estimated the carbon sequestration potential of the Flemish cropland soils to be some 300 kton CO2 yr?1 at best, which corresponds to a 40‐year restoration period. In conclusion, we can say that in regions where agricultural production is very intense, carbon sequestration in the cropland may make only a very modest contribution to a country's effort to reduce greenhouse gas emissions.  相似文献   

2.
3.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

4.
Improved soil management is increasingly pursued to ensure food security for the world's rising global population, with the ancillary benefit of storing carbon in soils to lower the threat of climate change. While all increments to soil organic matter are laudable, we suggest caution in ascribing large, potential climate change mitigation to enhanced soil management. We find that the most promising techniques, including applications of biochar and enhanced silicate weathering, collectively are not likely to balance more than 5% of annual emissions of CO2 from fossil fuel combustion.  相似文献   

5.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

6.
The role of soil organic carbon (SOC) sequestration as a ‘win-win’ solution to both climate change and food insecurity receives an increasing promotion. The opportunity may be too good to be missed! Yet the tremendous complexity of the two issues at stake calls for a detailed and nuanced examination of any potential solution, no matter how appealing. Here, we critically re-examine the benefits of global SOC sequestration strategies on both climate change mitigation and food production. While estimated contributions of SOC sequestration to climate change vary, almost none take SOC saturation into account. Here, we show that including saturation in estimations decreases any potential contribution of SOC sequestration to climate change mitigation by 53%–81% towards 2100. In addition, reviewing more than 21 meta-analyses, we found that observed yield effects of increasing SOC are inconsistent, ranging from negative to neutral to positive. We find that the promise of a win-win outcome is confirmed only when specific land management practices are applied under specific conditions. Therefore, we argue that the existing knowledge base does not justify the current trend to set global agendas focusing first and foremost on SOC sequestration. Away from climate-smart soils, we need a shift towards soil-smart agriculture, adaptative and adapted to each local context, and where multiple soil functions are quantified concurrently. Only such comprehensive assessments will allow synergies for land sustainability to be maximised and agronomic requirements for food security to be fulfilled. This implies moving away from global targets for SOC in agricultural soils. SOC sequestration may occur along this pathway and contribute to climate change mitigation and should be regarded as a co-benefit.  相似文献   

7.
Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity.  相似文献   

8.
Carbon sequestration potential in European croplands has been overestimated   总被引:5,自引:0,他引:5  
Yearly, per‐area carbon sequestration rates are used to estimate mitigation potentials by comparing types and areas of land management in 1990 and 2000 and projected to 2010, for the European Union (EU)‐15 and for four country‐level case studies for which data are available: UK, Sweden, Belgium and Finland. Because cropland area is decreasing in these countries (except for Belgium), and in most European countries there are no incentives in place to encourage soil carbon sequestration, carbon sequestration between 1990 and 2000 was small or negative in the EU‐15 and all case study countries. Belgium has a slightly higher estimate for carbon sequestration than the other countries examined. This is at odds with previous reports of decreasing soil organic carbon stocks in Flanders. For all countries except Belgium, carbon sequestration is predicted to be negligible or negative by 2010, based on extrapolated trends, and is small even in Belgium. The only trend in agriculture that may be enhancing carbon stocks on croplands at present is organic farming, and the magnitude of this effect is highly uncertain. Previous studies have focused on the potential for carbon sequestration and have shown quite significant potential. This study, which examines the sequestration likely to occur by 2010, suggests that the potential will not be realized. Without incentives for carbon sequestration in the future, cropland carbon sequestration under Article 3.4 of the Kyoto Protocol will not be an option in EU‐15.  相似文献   

9.
The ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO2 removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low-tech and cost-effective means for removing CO2 from the atmosphere while also delivering co-benefits to people and ecosystems. Our model estimates suggest that, assuming additive effects, the technical potential of combined SCS practices can provide 30%–70% of the carbon removal required by the Paris Climate Agreement if applied to 25%–50% of the available global land area, respectively. Atmospheric CO2 drawdown via SCS has the potential to last decades to centuries, although more research is needed to determine the long-term viability at scale and the durability of the carbon stored. Regardless of these research needs, we argue that SCS can at least serve as a bridging technology, reducing atmospheric CO2 in the short term while energy and transportation systems adapt to a low-C economy. Soil C sequestration in working lands holds promise as a climate change mitigation tool, but the current rate of implementation remains too slow to make significant progress toward global emissions goals by 2050. Outreach and education, methodology development for C offset registries, improved access to materials and supplies, and improved research networks are needed to accelerate the rate of SCS practice implementation. Herein, we present an argument for the immediate adoption of SCS practices in working lands and recommendations for improved implementation.  相似文献   

10.
Organic carbon (OC) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.  相似文献   

11.
Cities and urban regions are undertaking efforts to quantify greenhouse (GHG) emissions from their jurisdictional boundaries. Although inventorying methodologies are beginning to standardize for GHG sources, carbon sequestration is generally not quantified. This article describes the methodology and quantification of gross urban carbon sinks. Sinks are categorized into direct and embodied sinks. Direct sinks generally incorporate natural process, such as humification in soils and photosynthetic biomass growth (in urban trees, perennial crops, and regional forests). Embodied sinks include activities associated with consumptive behavior that result in the import and/or storage of carbon, such as landfilling of waste, concrete construction, and utilization of durable wood products. Using methodologies based on the Intergovernmental Panel on Climate Change 2006 guidelines (for direct sinks) and peer‐reviewed literature (for embodied sinks), carbon sequestration for 2005 is calculated for the Greater Toronto Area. Direct sinks are found to be 317 kilotons of carbon (kt C), and are dominated by regional forest biomass. Embodied sinks are calculated to be 234 kt C based on one year's consumption, though a complete life cycle accounting of emissions would likely transform this sum from a carbon sink to a source. There is considerable uncertainty associated with the methodologies used, which could be addressed with city‐specific stock‐change measurements. Further options for enhancing carbon sink capacity within urban environments are explored, such as urban biomass growth and carbon capture and storage.  相似文献   

12.
长期封育对不同类型草地碳贮量及其固持速率的影响   总被引:4,自引:0,他引:4  
何念鹏  韩兴国  于贵瑞 《生态学报》2011,31(15):4270-4276
基于4个长期封育草地,采用成对取样方法(封育-自由放牧草地)分析了长期封育和自由放牧草地地上生物量、地表凋落物、0-100 cm根系和土壤的碳氮贮量,探讨了长期封育草地的碳固持速率。实验结果表明:长期封育显著提高了草地碳氮贮量;经30a围封处理后,草地碳固持量为1401-2858 g C m-2,平均2126 g C m-2;草地碳固持速率为46.7-129.2 g C m-2 a-1,平均84.2 g C m-2 a-1。长期封育草地氮固持速率为2.8-14.7 g N m-2 a-1,平均7.3 g N m-2 a-1。封育草地碳和氮固持速率表现为:针茅草地<羊草草地<退化羊草草地<补播黄花苜蓿+羊草草地。长期封育草地0-40 cm土壤碳固持速率相对较高,但下层土壤对草地碳固持的贡献也比较大,因此,未来的相关研究应给予下层土壤更大关注。内蒙古典型草地具有巨大的碳固持潜力,长期封育(或禁牧)是实现其碳固持效应最经济、最有效的途径之一。  相似文献   

13.
Bottom–up estimates from long‐term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan‐European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha?1 yr?1, while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101–336 Mt CO2 eq. by 2020 and 549‐2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta‐analysis confirmed the robustness of these estimates.  相似文献   

14.
Bioenergy Crops and Carbon Sequestration   总被引:1,自引:0,他引:1  
Greenhouse gas (GHG) emissions constitute a global problem. The need for agricultural involvement in GHG mitigation has been widely recognized since the 1990s. The concept of C sinks, C credits, and emission trading has attracted special interests in herbaceous and woody species as energy crops and source of biofuel feedstock. Bioenergy crops are defined as any plant material used to produce bioenergy. These crops have the capacity to produce large volume of biomass, high energy potential, and can be grown in marginal soils. Planting bioenergy crops in degraded soils is one of the promising agricultural options with C sequestration rates ranging from 0.6 to 3.0 Mg C ha?1 yr?1. About 60 million hectares (Mha) of land is available in the United States and 757 Mha in the world to grow bioenergy crops. With an energy offset of 1 kg of C in biomass per 0.6 kg of C in fossil fuel, there exists a vast potential of offsetting fossil fuel emission. Bioenergy crops have the potential to sequester approximately 318 Tg C yr?1 in the United States and 1631 Tg C yr?1 worldwide. Bioenergy crops consist of herbaceous bunch-type grasses and short-rotation woody perennials. Important grasses include switchgrass (Panicum virgatum L.), elephant grass (Pennissetum purpureum Schum.), tall fescue (Fetusca arundinacea L.), etc. Important among short-rotation woody perennials are poplar (Populus spp.), willow (Salix spp.), mesquite (Prosopis spp.), etc. The emissions of CO2 from using switchgrass as energy crop is 1.9 kg C Gj?1 compared with 13.8, 22.3, and 24.6 kg C Gj?1 from using gas, petroleum, and coal, respectively. Mitigation of GHG emissions cannot be achieved by C sinks alone, a substantial reduction in fossil fuel combustion will be necessary. Carbon sequestration and fossil fuel offset by bioenergy crops is an important component of a possible total societal response to a GHG emission reduction initiative.  相似文献   

15.
The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic information system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8 ± 0.5 Pg C, or 8% of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestration to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maximizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest.  相似文献   

16.
基于森林清查资料的江西和浙江森林植被固碳潜力   总被引:1,自引:0,他引:1  
Nie H  Wang SQ  Zhou L  Wang JY  Zhang Y  Deng ZW  Yang FT 《应用生态学报》2011,22(10):2581-2588
以我国江西、浙江两省的森林植被为研究对象,基于1999-2003年间第六次全国森林清查数据及收集的1030个亚热带森林样地文献资料,依据林分生长的经验方程,估算了两个地区森林2004-2013年的固碳潜力,并基于455个样点的调查数据研究了不同森林管理措施(纯林间种、间伐、施肥)对森林未来固碳潜力的影响.结果表明:第六次森林清查以来的10年(2004-2013)间,江西森林植被年均自然固碳潜力约11.37 Tg C·a-1(1Tg=1012g),而浙江省森林植被年均自然固碳潜力约4.34 Tg C·a-1.纯林间种对江西、浙江两省森林植被固碳潜力影响最大,其次为间伐抚育,施肥的影响最小,纯林间种、间伐和施肥3种森林管理措施使江西省森林植被固碳潜力分别提高(6.54±3.9)、(3.81±2.02)和(2.35±0.6) Tg C·a-1,浙江省森林植被固碳潜力分别提高(2.64±1.28)、(1.42±0.69)和(1.15±0.29) Tg C·a-1.  相似文献   

17.
Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that grassland C sequestration has a strong potential to partly mitigate the GHG balance of ruminant production systems. However, as soil C sequestration is both reversible and vulnerable to disturbance, biodiversity loss and climate change, CH4 and N2O emissions from the livestock sector need to be reduced and current SOC stocks preserved.  相似文献   

18.
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near‐term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land‐use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion efficiencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the harvest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear‐cutting) at high‐frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity.  相似文献   

19.
Native ecosystems face challenges of past and ongoing human actions, including vegetation clearance and climate change arising from greenhouse gas emissions. Reforestation is an important tool for sequestering carbon, so we sought to determine how replanted native trees responded to weather, soil conditions and planting characteristics. We measured girth growth of 13 tree species in 19 native mixed‐species plantings and one remnant in south‐eastern Australia, bimonthly from 2011 to 2016; replantings ranged between 6 and 46 years at the commencement of measurements. Band dendrometers (flexible bands that record changes in girth) were used to measure growth, with 34 measurements per tree taken over 5 years. We used outcomes from models with several plausible weather future scenarios (Dry, Wet, Wet‐to‐Dry and Average) for 25 and 50 years for tree girth, and 25 years for carbon accumulation, into the future. Woody species richness enhanced girth growth of all tree species. Higher maximum temperatures and reduced rainfall, which generally are predicted for the region over coming decades, retarded growth of nine tree species. Planting tree density had no discernible association with growth for the range of planting densities used. The most and least carbon were sequestered in Wet and Dry projections, respectively. Three Acacia spp. (N‐fixers) grew slowest and would sequester least carbon, while four species of Eucalyptus grew fastest. These measurements of growth provide critical information for land managers to guide choice in replanting strategies for carbon storage.  相似文献   

20.
毛乌素沙地沙漠化逆转过程土壤颗粒固碳效应   总被引:3,自引:0,他引:3  
为揭示毛乌素沙地沙漠化逆转过程中土壤颗粒的固碳效应,选择陕北榆林治沙区从流沙地、半固定沙地到林龄为20~55年生的灌木和20~50年生的乔木固沙林地,采用物理分组法分析了土壤砂粒、粉粒、黏粒结合碳的演变特征和累积速率.结果表明: 对比流沙地,土壤总有机碳及各颗粒碳含量在两种固沙林地均呈显著增加趋势,并以表层0~5 cm土壤碳含量增幅最高.从流沙地到55年生灌木和50年生乔木固沙林地,0~5 cm土层砂粒碳密度增速均为0.05 Mg·hm-2·a-1,粉粒碳密度增速分别为0.05和0.08 Mg·hm-2·a-1,而黏粒碳密度增速分别为0.02和0.03 Mg·hm-2·a-1.0~20 cm土层,两种林地各颗粒碳密度增速平均为0~5 cm土层的2.1倍.按此增速到50~55年生的固沙林地时,两种林地0~20 cm土层的砂粒碳、粉粒碳和黏粒碳密度分别比流沙地平均提高6.7、18.1、4.4倍,并且颗粒碳对总有机碳的累积贡献率平均为粉粒碳(39.7%)≈砂粒碳(34.6%)>黏粒碳(25.6%).综上,毛乌素沙地沙漠化逆转过程土壤颗粒均表现出显著的固碳效应,且以砂粒和粉粒为主要固碳组分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号