首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of Chlamydomonas dynein with tubulin   总被引:3,自引:0,他引:3  
Studies were conducted to determine if dynein could bind to unpolymerized tubulin. Tubulin alone normally fractionated in the included volume of a molecular sieve Bio-Gel A-1.5m column. Incubated together, tubulin and dynein coeluted in the void volumn, suggesting that a complex had formed between the two. In addition, immunoelectron microscopy revealed preassembled microtubules were labeled with biotin antibody only when incubated in both dynein and biotinylated tubulin, evidence that dynein with bound biotinylated tubulin had decorated the microtubules. A fraction of the tubulin could be dissociated from dynein by addition of ATP and vanadate, as assayed by molecular sieve chromatography followed by densitometry of gels, suggesting that some tubulin bound to the B end of the dynein arm. Additional tubulin dissociated from the dynein under conditions of high salt. These studies, together with those indicating that tubulin blocked the A end of the dynein arm from binding to microtubules and promoted the interaction of two arms at their A ends, provide evidence that the A end of the arm also can bind tubulin. Thus, the tubulin subunits, themselves, on a microtubule rather than a particular surface lattice structure formed by adjacent protofilaments may provide the binding sites for both ends of the dynein arm.  相似文献   

2.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

3.
D Panda  S Roy  B Bhattacharyya 《Biochemistry》1992,31(40):9709-9716
Concentration-dependent dissociation of dimers of goat brain tubulin S and tubulin was studied by fluorescence anisotropy. Upon dilution, assembly-competent fluorescein 5'-maleimide labeled dimers of tubulin S and tubulin show a progressive decrease in fluorescence anisotropy. That this lowering of anisotropy results from the dissociation of tubulin S dimers into monomers was shown by dilution experiments with unlabeled homologous and heterologous proteins. A nonlinear least-squares fit of the data gave a dissociation constant of 7.1 x 10(-8) M for tubulin S compared to 7.2 x 10(-7) M for tubulin at 25 degrees C in 0.1 M PEM buffer, pH 7.0. van't Hoff plots of dimer-monomer dissociation of tubulin S and tubulin also show considerable differences in delta H and delta S. Effects of ionic strength and colchicine on the equilibrium constants are also substantially different for tubulin and tubulin S. The implications of these observations on the influence of C-terminal tails on tubulin structure are discussed.  相似文献   

4.
The C-terminus of the alpha-chain of tubulin is subject to reversible incorporation of tyrosine by tubulin tyrosine ligase and removal by tubulin carboxypeptidase. Thus, microtubules rich in either tyrosinated or detyrosinated tubulin can coexist in the cell. Substitution of the terminal tyrosine by 3-nitrotyrosine has been claimed to cause microtubule dysfunction and consequent injury of epithelial lung carcinoma A549 cells. Nitrotyrosine is formed in cells by nitration of tyrosine by nitric oxide-derived species. We studied properties of tubulin modified by in vitro nitrotyrosination at the C-terminus of the alpha-subunit, and the consequences for cell functioning. Nitrotyrosinated tubulin was a good substrate of tubulin carboxypeptidase, and showed a similar capability to assemble into microtubules in vitro to that of tyrosinated tubulin. Tubulin of C6 cells cultured in F12K medium in the presence of 500 micro m nitrotyrosine became fully nitrotyrosinated. This nitrotyrosination was shown to be reversible. No changes in morphology, proliferation, or viability were observed during cycles of nitrotyrosination, denitrotyrosination, and re-nitrotyrosination. Similar results were obtained with CHO, COS-7, HeLa, NIH-3T3, NIH-3T3(TTL-), and A549 cells. C6 and A549 cells were subjected to several passages during 45 days or more in the continuous presence of 500 micro m nitrotyrosine without noticeable alteration of morphology, viability, or proliferation. The microtubular networks visualized by immunofluorescence with antibodies to nitrotyrosinated and total tubulin were identical. Furthermore, nitrotyrosination of tubulin in COS cells did not alter the association of tubulin carboxypeptidase with microtubules. Our results demonstrate that substitution of C-terminal tyrosine by 3-nitrotyrosine has no detrimental effect on dividing cells.  相似文献   

5.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

6.
A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer.  相似文献   

7.
Mechanisms of regulating tubulin synthesis in cultured mammalian cells.   总被引:64,自引:0,他引:64  
A Ben-Ze'ev  S R Farmer  S Penman 《Cell》1979,17(2):319-325
Colchicine and nocadazole both depolymerize microtubules in cultured fibroblasts and lead to a rapid inhibition of tubulin synthesis. The level of translatable tubulin mRNA is greatly reduced in drug-treated cells as demonstrated by translation in a reticulocyte-derived in vitro protein synthesizing system. A model of tubulin synthesis regulation is proposed in which the elevated level of unpolymerized tubulin in drug-treated cells inhibits the formation of new tubulin mRNA and the preexisting message decays rapidly. In agreement with this model, tubulin message is found to be short-lived and has an approximately 2 hr half-life in cells treated with actinomycin D. Another prediction of the proposed model is that destabilization of microtubules without a concomitant increase in free tubulin will not inhibit tubulin synthesis. Vinblastine also disrupts microtubules but leads to the aggregation of tubulin into large paracrystals with an apparent decrease in the concentration of free tubulin. This drug does not inhibit tubulin production but rather leads to a measurable enhancement of tubulin synthesis.  相似文献   

8.
A radioimmune assay for microtubule protein, tubulin, is described, in which unknown amounts of native or denatured tubulin can be quantitated by the ability to compete with pure [125I]tubulin for rabbit antibodies produced against purified bovine brain tubulin. The assay is used to demonstrate that crude extracts of mouse brain contain negligible amounts of 30–36S tubulin oligomers under conditions where purified tubulin forms substantial amounts of such structures. Also, the particulate fraction of osmotically shocked and sonicated brain synaptosomes contains negligible tubulin antigenic activity. By contrast, soluble extracts of soybean, especially rapidly dividing regions of the plant, were found to contain significant amounts of cross-reacting material, providing further evidence for the conservative evolutionary nature of this ubiquitous and important protein.  相似文献   

9.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

10.
We previously reported a specific stimulation of polymorphonuclear leukocyte (PMN) tubulin tyrosinolation as induced by the peptide chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fmet-leu-phe) and the Ca2+ ionophore A23187 that is coupled to the NADPH oxidase-mediated stimulation of the PMN respiratory burst. The present study demonstrates that the presence of extracellular Ca2+ is necessary for fmet-leu-phe- and A23187-induced stimulation of PMN tubulin tyrosinolation, as indicated by the complete inhibition of the response by the addition of 1 mM EGTA to the extracellular medium. Methoxyverapamil (10(-5) M), a putative calcium channel blocker, completely inhibited the fmet-leu-phe-induced stimulation of tubulin tyrosinolation in PMN, but did not inhibit the A23187-induced response. Moreover, the calmodulin-binding drugs, trifluoperazine, fluphenazine, or chlorpromazine, at concentrations of 1 to 10 microM, caused significant inhibition of fmet-leu-phe- or A23187-induced stimulation of tubulin tyrosinolation. In related studies, enzymatic [14C]-tyrosinolation in isolated subcellular fractions of PMN revealed the presence of native tubulin in PMN fractions that were enriched in plasma membranes, the specific granules, or the azurophil granules. Most interestingly, tubulin tyrosine ligase (ligase), primarily a cytoplasmic enzyme, was detected in association with the PMN azurophil granule-rich fraction. Immunoautoradiography with the alpha-tubulin antibody YL 1/2 of isolated PMN subcellular fractions demonstrated a preferential stimulation of tyrosinolation of tubulin associated with the plasma membrane-rich fraction of fmet-leu-phe-stimulated cells. A significant stimulation was also observed in the cytoplasmic tubulin fraction. Consistent with the findings of in vitro tyrosinolation studies with PMN subcellular fractions, tyrosinolated tubulin was detected in the azurophil granule-enriched fractions isolated from both resting and fmet-leu-phe-stimulated cells. The antibody YL 1/2, which reacts with tyrosinolated alpha-tubulin and not with the detyrosinolated form, showed significant cross-reaction with several nontubulin PMN proteins.  相似文献   

11.
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.  相似文献   

12.
The interaction of the anti-cancer drug podophyllotoxin with a high-molecular-weight assembly of tubulin has been employed to produce three-dimensional crystals from avian erythrocyte tubulin as well as from pig brain tubulin. Avian erythrocyte tubulin crystals belong to the space group C2 with unit cell dimensions a = 740 A, b = 330 A, c = 460 A, beta = 128 degrees. The basis of these crystals is ring oligomers with a molecular mass of approximately 6 x 10(6) Da. So far, the crystals diffract to 8-A resolution and a first complete data set to 12-A resolution has been collected under cryogenic conditions. The crystals grew from conventionally purified tubulin consisting of multiple isoforms and different posttranslational modifications. Thus, the use of highly homogeneous tubulin preparations should improve the diffraction quality of these crystals.  相似文献   

13.
14.
The interaction of phomopsin A with bovine brain tubulin   总被引:1,自引:0,他引:1  
Phomopsin A is an anti-mitotic compound from the fungus Phomopsis leptostroniformis which is a potent inhibitor of microtubule assembly in vitro; like maytansine, it is known to compete with vinblastine for binding to tubulin (E. Lacey, J. A. Edgar, and C. C. J. Culvenor (1987) Biochem. Pharmacol. 36, 2133-2138). A major difference between the effects of maytansine and vinblastine is that vinblastine is a potent inhibitor of tubulin decay, whereas maytansine has little or no effect on decay. Since phomopsin A is structurally distinct from either maytansine or vinblastine, tubulin decay may be measured by either the time-dependent loss of the ability to bind to [3H]colchicine or the time-dependent increase in the binding of bis(8-anilinonaphthalene 1-sulfonate) (BisANS) to tubulin. By either method, phomopsin A was found to be a much stronger inhibitor of tubulin decay than is vinblastine or any other drug yet tested, and in fact, when decay is measured by the increase of BisANS binding, phomopsin A appears to stop the process entirely. This may prove to be useful in the determination of the higher-order structure of the tubulin molecule.  相似文献   

15.
Microtubule architecture can vary with eukaryotic species, with different cell types, and with the presence of stabilizing agents. For in vitro assembled microtubules, the average number of protofilaments is reduced by the presence of sarcodictyin A, epothilone B, and eleutherobin (similarly to taxol) but increased by taxotere. Assembly with a slowly hydrolyzable GTP analogue GMPCPP is known to give 96% 14 protofilament microtubules. We have used electron cryomicroscopy and helical reconstruction techniques to obtain three-dimensional maps of taxotere and GMPCPP microtubules incorporating data to 14 A resolution. The dimer packing within the microtubule wall is examined by docking the tubulin crystal structure into these improved microtubule maps. The docked tubulin and simulated images calculated from "atomic resolution" microtubule models show tubulin heterodimers are aligned head to tail along the protofilaments with the beta subunit capping the microtubule plus end. The relative positions of tubulin dimers in neighboring protofilaments are the same for both types of microtubule, confirming that conserved lateral interactions between tubulin subunits are responsible for the surface lattice accommodation observed for different microtubule architectures. Microtubules with unconventional protofilament numbers that exist in vivo are likely to have the same surface lattice organizations found in vitro. A curved "GDP" tubulin conformation induced by stathmin-like proteins appears to weaken lateral contacts between tubulin subunits and could block microtubule assembly or favor disassembly. We conclude that lateral contacts between tubulin subunits in neighboring protofilaments have a decisive role for microtubule stability, rigidity, and architecture.  相似文献   

16.
D Saltarelli  D Pantaloni 《Biochemistry》1983,22(19):4607-4614
We have shown previously [Saltarelli, D., & Pantaloni, D. (1982) Biochemistry 21, 2996-3006] that the tubulin-colchicine complex is able to polymerize in vitro into peculiar "curly" polymers, under the solution conditions permitting polymerization of unliganded tubulin into microtubules. Here it is further demonstrated that unliganded tubulin can be incorporated into these "curly" polymers. The partial critical concentration of tubulin-colchicine is decreased upon incorporation of unliganded tubulin into the copolymer. GTP hydrolysis occurs on unliganded tubulin upon incorporation in the copolymer. Tubulin-podophyllotoxin does not copolymerize with tubulin-colchicine to form a large polymer but interacts with it, preventing tubulin-colchicine polymerization. The data have been analyzed within a model of random copolymerization of unliganded tubulin and tubulin-colchicine into "curly" polymers. A corollary is that unliganded tubulin is virtually able to self-assemble into curly polymers with a critical concentration 10-fold higher than the critical concentration found for microtubule assembly. Consequently, these peculiar tubulin homopolymers cannot be observed except as transients at high concentrations, or when microtubule assembly is inhibited. Kinetic measurements of the T-TC copolymerization process and associated GTP hydrolysis at different T/TC ratios provide supplementary information about some privileged interactions between tubulin and tubulin-colchicine molecules. A comprehensive phase diagram of the various possible polymers formed in the presence of tubulin and tubulin-colchicine is presented.  相似文献   

17.
The antitumor macrolide aplyronine A induces protein–protein interaction (PPI) between actin and tubulin to exert highly potent biological activities. The interactions and binding kinetics of these molecules were analyzed by the surface plasmon resonance with biotinylated aplyronines or tubulin as ligands. Strong binding was observed for tubulin and actin with immobilized aplyronine A. These PPIs were almost completely inhibited by one equivalent of either aplyronine A or C, or mycalolide B. In contrast, a non-competitive actin-depolymerizing agent, latrunculin A, highly accelerated their association. Significant binding was also observed for immobilized tubulin with an actin–aplyronine A complex, and the dissociation constant KD was 1.84 μM. Our method could be used for the quantitative analysis of the PPIs between two polymerizing proteins stabilized with small agents.  相似文献   

18.
A rapid and sensitive assay for [3H]GTP binding activity of tubulin has been developed. This assay method is based on the quantitative retention of [3H]GTP. Tubulin complex on a nitrocellulose membrane filter. It was also found that bovine brain tubulin is markedly stablized by glycerol and GTP against denaturation. A large-scale purification of bovine brain tubulin was achieved using the new assay procedure and by the inclusion of glycerol and GTP in a buffer solution used for column chromatograph. The purified tubulin could be stored at -80degrees in the presence of glycerol and GTP for at least a year without any apprecialbe loss of [3H]GTP- and [3H]colchicine binding activities. The interaction of tubulin with guanine nucleotides was also studied using the nitorcellulose membrane filter procedure. It was found that the binding of [3H]GTP to tubulin with an empty exchangeable site proceeded promptly within k sec while the exchange of [3H]GTP- with a GTP-tubulin complex in which the exchangeable site had been occupied with unlabeled GTP occured more slowly. The dissociation constants for GTP and GDP at the exchangeable site of tubulin were determined as 0.5 times 10-6M and 1.9 times 10-6M, respectively. 5'-Guanylylimidodiphosphate could interact, although less strongly, with tubulin at this site, whereas the interaction of other nucleoside triphosphates includint ATP, CTP, UTP, and 5'-guanylyl methylenediphosphonate was very weak, if it occured at all. The presence of Mg2+ and a free sulfhydryl group was found to be essential for binding of [3H]GTP to tubulin. Ca2+ was found to replace Mg2+ in this binding reaction.  相似文献   

19.
Cytochalasin A (CA) inhibits the self-assembly of beef brain tubulin. The concentrations necessary to cause the inhibition are only slightly higher than the tubulin concentration. Cytochalasin B (CB) at identical and higher concentrations has no noticeable effect. Cytochalasin A also inhibits colchicine binding activity suggesting that it denatures the tubulin molecule. The results indicate that the reaction of CA with the sulfhydryl groups of tubulin is responsible for its action. CA also prevents the conversion of G-actin to F-actin, probably via a similar mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号