首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
酸敏感离子通道的功能及其相关调控   总被引:3,自引:1,他引:3  
酸敏感离子通道(ASICs)是一类由胞外酸化所激活的阳离子通道.目前,已发现了6个ASICs亚基,它们在外周和中枢神经系统中广泛表达.利用基因敲除等技术,已证明它们在触觉、痛觉、酸味觉以及学习记忆中具有重要作用.同时,它们也参与某些病理反应.ASICs可以被神经肽、温度、金属离子和缺血相关物质等调控,从而整合细胞周围的多种信号以行使其功能.  相似文献   

2.
张映  刘颖异  胡玲琴  马驰  潘玉君 《生物磁学》2014,(13):2566-2568
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca^2+通透,能引起细胞内Ca^2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   

3.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca2+通透,能引起细胞内Ca2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   

4.
大鼠脊髓背角神经元中酸敏感离子通道的特性和功能研究   总被引:1,自引:0,他引:1  
Wu LJ  Xu TL 《生理科学进展》2006,37(2):135-137
酸敏感离子通道(ASICs)是一类能被细胞外酸所激活的配体门控离子通道。本文综合报道大鼠脊髓背角神经元中ASICs的亚基组成及其功能性调节:(1)脊髓背角主要表达ASIC1a、ASIC2a和ASIC2b,但不表达ASIC1b和ASIC3;(2)在脊髓背角神经元中酸诱导电流可能由ASIC1a同聚体通道所介导;(3)胞外痛觉信号如实验性缺血和神经肽FMRF可以通过不同的机制增强脊髓背角神经元酸诱导电流;(4)炎症痛可以上调脊髓背角ASICs在转录和蛋白水平的表达。上述各点提示,在生理或病理情况下脊髓背角ASICs对脊髓水平的感觉信息传递特别是痛觉的传导可能发挥着重要作用。  相似文献   

5.
组织酸化参与外周痛觉传递的离子通道机制   总被引:2,自引:0,他引:2  
组织酸化可以导致痛觉的产生.初级感觉神经元可以通过离子通道来感受外周的组织酸化.已鉴定了几个离子通道家族可能参与了外周组织酸化的感受:a.酸敏感离子通道(ASICs)是可以被酸直接门控的阳离子通道;b.辣椒素受体(VR1)可被酸敏化,同时可被pH<6.0直接激活;c.P2X2和P2X2/3受体通道反应被酸上调;d.TwIK相关的酸感受钾通道(TASK)是被酸关闭的双孔内向整流钾通道.这些通道被酸所调控的共同结果就是提高了神经元的兴奋性.因此,它们在介导了组织酸化所诱导的痛觉感受和传递中具有重要作用.  相似文献   

6.
酸感受离子通道(ASICs)为H -门控的阳离子通道,是一类新的配体门控性离子通道,属于钠通道超家族的新成员.作为近来研究的热点,ASICs具有许多重要的生物学功能,并很有可能成为抗癫痫、镇痛、提高学习记忆能力和保护神经元缺血损伤作用药理学新靶点.近来,ASICs各个亚基已被克隆,它们在生物体内分布、表达、功能和相关调节因素的研究正受到广泛重视.  相似文献   

7.
酸敏感离子通道(ASICs)属于上皮 Na+ 通道/退化蛋白超家族,对细胞外 H+ 浓度变化敏感,其受多种外源性配体调控,产生 不同生理和病理学效应。越来越多研究发现,ASICs 参与脑缺血、炎症、肿瘤等具有酸化改变的病理过程。简介 ASICs 的结构及其配体 作用位点以及各亚基的组织分布和电生理特性,主要对各类 ASICs 外源性配体的研究进展作一综述。  相似文献   

8.
1-42与小胶质细胞之间相互作用诱发的神经炎症反应已被视为阿尔茨海默病(AD)的重要病理指征,酸敏感离子通道(ASIC)参与了小胶质细胞的炎症应答和神经炎症免疫调节。为了探究Aβ1-42对小胶质细胞ASIC的表达和电生理特性的影响,本研究利用Aβ1-42孵育原代培养的SD大鼠大脑皮层小胶质细胞,免疫印迹技术和免疫荧光技术检测小胶质细胞ASIC1、ASIC2a、ASIC3的蛋白表达和分布情况,全细胞膜片钳记录Aβ1-42对ASIC电流特性的影响,钙离子成像技术分析ASIC钙离子通透性的变化。结果显示:Aβ1-42处理小胶质细胞后,能够诱导ASIC1的蛋白表达量增加,且其在细胞浆和细胞核中均有明显增加;胞外pH值快速降低诱发的ASIC电流,小胶质细胞胞内钙离子浓度明显增强,这种增强效应可被ASIC非特异性抑制剂阿米洛利和ASIC1特异性抑制剂PcTx1抑制。本研究结果表明,Aβ1-42诱导小胶质细胞ASIC1蛋白功能性表达增加,使得ASIC1易于被胞外快速...  相似文献   

9.
酸敏感离子通道(acid-Sensing ion channels,ASlCs)是一类由细胞外质子(H )激活的配体门控阳离子通道.迄今为止,人们在哺乳动物体内已经发现了6种ASICs亚基蛋白,它们分布在多种组织器官中.越来越多的研究表明:ASICs参与了机体的生理、病理过程,如:学习、记忆、痛觉、脑中风和肿瘤.在过去的10年中,人们发现多种内源性或外源性分子可以调控ASICs通道活性.由于这些细胞外调控分子与多种生理和病理功能有关,因此研究细胞外调控分子对ASICs的调控及其分子机制,可以帮助我们更多地了解ASICs功能以及结构信息,也为人们设计ASICs靶点特异性药物提供了理论依据.文章将系统地介绍细胞外调控分子对ASICs的功能调控及其作用机制,特别是该研究领域的最新进展.  相似文献   

10.
机械敏感离子通道(mechanosensitive ion channels, MSC)是一类受机械压力影响而产生兴奋电信号的离子通道,广泛分布于生物各组织器官中,参与生物体内的多种生理过程。最近在哺乳动物体内发现了一种新型的MSC蛋白Piezo1,它与其他MSC蛋白不具有同源性,在细胞感应机械应力的过程中发挥着重要作用。大量研究结果表明,Piezo1在动脉血压的控制、红细胞体积的改变、心脏相关因子的分泌等生理过程中扮演了重要角色,与心血管系统关系密切。在哺乳动物心血管系统中,心脏、动脉血管、毛细微血管和红细胞等都可感受来自细胞外环境机械应力刺激,而Piezo1将机械应力转化为生物电信号,进而影响后续的生理过程。本文介绍了Piezo1在心血管系统中的作用,并总结Piezo1蛋白的具体作用机制及其差异,以期为进一步的研究提供有益参考。  相似文献   

11.
Acid-sensing ion channels are cation channels activated by external protons and play roles in nociception, synaptic transmission, and the physiopathology of ischemic stroke. Using luminescence resonance energy transfer (LRET), we show that upon proton binding, there is a conformational change that increases LRET efficiency between the probes at the thumb and finger subdomains in the extracellular domain of acid-sensing ion channels. Additionally, we show that this conformational change is lost upon mutating Asp-238, Glu-239, and Asp-260, which line the finger domains, to alanines. Electrophysiological studies showed that the single mutant D260A shifted the EC50 by 0.2 pH units, the double mutant D238A/E239A shifted the EC50 by 2.5 pH units, and the triple mutant D238A/E239A/D260A exhibited no response to protons despite surface expression. The LRET experiments on D238A/E239A/D260A showed no changes in LRET efficiency upon reduction in pH from 8 to 6. The LRET and electrophysiological studies thus suggest that the three carboxylates, two of which are involved in carboxyl/carboxylate interactions, are essential for proton-induced conformational changes in the extracellular domain, which in turn are necessary for receptor activation.  相似文献   

12.
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are widely expressed in both the peripheral and central nervous systems. ASICs contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke, epileptic seizures and multiple sclerosis. Although much progress has been made in researching the structure-function relationship and pharmacology of ASICs, little is known about the trafficking of ASICs and its contribution to ASIC function. The recent identification of the mechanism of membrane insertion and endocytosis of ASIC1a highlights the emerging role of ASIC trafficking in regulating its pathophysiological functions. In this review, we summarize the recent advances and discuss future directions on this topic.  相似文献   

13.
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are widely expressed in both the peripheral and central nervous systems. ASICs contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke, epileptic seizures and multiple sclerosis. Although much progress has been made in researching the structure-function relationship and pharmacology of ASICs, little is known about the trafficking of ASICs and its contribution to ASIC function. The recent identification of the mechanism of membrane insertion and endocytosis of ASIC1a highlights the emerging role of ASIC trafficking in regulating its pathophysiological functions. In this review, we summarize the recent advances and discuss future directions on this topic.  相似文献   

14.
Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号