首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.  相似文献   

2.
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.  相似文献   

3.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

4.
The recovery process in experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by an increasing diversity of T cell clones directed at secondary epitopes of myelin basic protein. Of particular interest, residues 55 to 69 of guinea pig basic protein could induce protection against EAE. A nonencephalitogenic T cell clone, C455-69, that was specific for this epitope transferred protection against both active and passive EAE. Clone C4 was found to express V beta 8.6 in its Ag receptor, and residues 39 to 59 of the TCR V beta 8.6 sequence were found to be highly crossreactive with the corresponding residues 39 to 59 of TCR V beta 8.2, which is known to induce protective anti-idiotypic T cells and antibodies. Like the TCR V beta 8.2 peptide, the V beta 8.6 sequence induced autoregulation and provided effective treatment of established EAE. Thus, the EAE-protective effect of the guinea pig basic protein 55-69 sequence was most likely mediated by T cell clones such as C4 that could efficiently induce anti-TCR immunity directed at a cross-reactive regulatory idiotope.  相似文献   

5.
We have previously identified potential pathogenic T cells within glomeruli that use TCR encoding Vbeta5, Vbeta7, and Vbeta13 in combination with Jbeta2.6 in Heymann nephritis (HN), a rat autoimmune disease model of human membranous nephritis. Vaccination of Lewis rats with naked DNA encoding these pathogenic TCRs significantly protected against HN. Proteinuria was reduced at 6, 8, 10, and 12 wk after immunization with Fx1A (p < 0.001). Glomerular infiltrates of macrophages and CD8(+) T cells (p < 0.005) and glomerular IFN-gamma mRNA expression (p < 0.01) were also significantly decreased. DNA vaccination (DV) causes a loss of clonality of T cells in the HN glomeruli. T lymphocytes with surface binding of Abs were found in DNA vaccinated rats. These CD3(+)/IgG(+) T cells expressed Vbeta5 and Vbeta13 that the DV encoded. Furthermore, FACS shows that these CD3(+)/IgG(+) cells were CD8(+) T cells. Analysis of cytokine mRNA expression showed that IL-10 and IFN-gamma mRNA were not detected in these CD3(+)/IgG(+) T cells. These results suggest that TCR DNA vaccination produces specific autoantibodies bound to the TCRs encoded by the vaccine, resulting in blocking activation of the specific T cells. In this study, we have shown that treatment with TCR-based DV, targeting previously identified pathogenic Vbeta families, protects against HN, and that the mechanism may involve the production of specific anti-TCR Abs.  相似文献   

6.
CD4+CD25+ regulatory T cells (Tr) are important in maintaining immune tolerance to self-antigen (Ag) and preventing autoimmunity. Reduced number and inadequate function of Tr are observed in chronic autoimmune diseases. Adoptively transferred Tr effectively suppress ongoing autoimmune disease in multiple animal models. Therefore, strategies to modulate Tr have become an attractive approach to control autoimmunity. Activation of Tr is necessary for their optimal immune regulatory function. However, due to the low ratio of Tr to any given antigen (Ag) and the unknown nature of Ag in many autoimmune diseases, specific activation is not practical for potential therapeutic intervention. It has been shown in animal models that once activated, Tr can exhibit immune suppression in a bystander Ag-non-specific fashion, suggesting the effector phase of Tr is Ag independent. To investigate whether the immune suppression by activated bystander Tr is as potent as that of the Ag specific Tr, Tr cells were isolated from BALB/c or ovalbumin (OVA) specific T cell receptor (TCR) transgenic mice (DO11.10) and their immune suppression of an OVA specific T cell response was compared. We found that once activated ex vivo, Tr from BALB/c and DO11.10 mice exhibited comparable inhibition on OVA specific T cell responses as determined by T cell proliferation and cytokine production. Furthermore, their immune suppression function was compared in a delayed type hypersensitivity (DTH) model induced by OVA specific T cells. Again, OVA specific and non-specific Tr exhibited similar inhibition of the DTH response. Taken together, the results indicate that ex vivo activated Ag-non-specific Tr are as efficient as Ag specific Tr in immune suppression, therefore our study provides additional evidence suggesting the possibility of applying ex vivo activated Tr therapy for the control of autoimmunity.  相似文献   

7.
Adenovirus vectors are increasingly being used for genetic vaccination and may prove highly suitable for intervention in different pathological conditions due to their capacity to generate high level, transient gene expression. In this study, we report the use of a recombinant adenovirus vector to induce regulatory responses for the prevention of autoimmune diseases through transient expression of a TCR beta-chain. Immunization of B10.PL mice with a recombinant adenovirus expressing the TCR Vbeta8.2 chain (Ad5E1 mVbeta8.2), resulted in induction of regulatory type 1 CD4 T cells, directed against the framework region 3 determinant within the B5 peptide (aa 76-101) of the Vbeta8.2 chain. This determinant is readily processed and displayed in an I-A(u) context, on ambient APC. Transient genetic delivery of the TCR Vbeta8.2 chain protected mice from Ag-induced experimental autoimmune encephalomyelitis. However, when the Ad5E1 mVbeta8.2 vector was coadministered with either an IL-4- or IL-10-expressing vector, regulation was disrupted and disease was exacerbated. These results highlight the importance of the Th1-like cytokine requirement necessary for the generation and activity of effective regulatory T cells in this model of experimental autoimmune encephalomyelitis.  相似文献   

8.
9.
Immunization with irradiated autoreactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that preferentially recognize complementarity-determining region 3 sequences, contributing to clonal depletion of autoreactive T cells. However, it remains unknown whether T cell vaccination elicits anti-idiotypic humoral responses and whether the anti-idiotypic Abs play a similar role in the regulatory mechanism induced by T cell vaccination. In this study we examined the occurrence, the reactivity pattern, and the regulatory role of anti-idiotypic Abs elicited by T cell vaccination in patients with multiple sclerosis. We demonstrated for the first time that B cells producing anti-idiotypic Abs could be isolated from vaccinated patients. These EBV-transformed B cell lines were selected for specific reactivity to a 20-mer TCR peptide incorporating a common complementarity-determining region 3 sequence of the immunizing T cell clones. The resulting anti-idiotypic Abs were found to react with the original immunizing T cell clones and exhibit an inhibitory effect on their proliferation. The findings suggest that anti-idiotypic Ab responses can be induced by T cell vaccination in humans and that their regulatory properties are likely to contribute to the suppression of myelin basic protein-reactive T cells in vaccinated patients. The study has important implications in our understanding of the regulatory role of the anti-idiotypic humoral responses induced by T cell vaccination.  相似文献   

10.
调节性 T 细胞发育的一个关键转录因子 Foxp3   总被引:3,自引:0,他引:3  
调节性 T 细胞是目前免疫学领域研究的热点,对于维持机体免疫耐受和免疫应答稳态具有非常重要的作用 . 对其发育和功能机制的深入认识,不但有助于了解错综复杂的免疫系统理论,而且在自身免疫性疾病、肿瘤和艾滋病的治疗以及移植耐受的诱导等方面具有广泛的应用前景 . 最近的研究发现,转录因子 Foxp3 对于调节性 T 细胞的发育具有重要的作用,是调节性 T 细胞发育的一个关键转录因子 .  相似文献   

11.
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and in turn, initiates store-operated Ca2+ entry (SOCE), one of the major mechanisms to raise the intracellular Ca2+ concentrations in T cells. Ca2+-release-activated-Ca2+ (CRAC) channels are a prototype of store-operated Ca2+ (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca2+ sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca2+ signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.  相似文献   

12.
Fas-dependent, activation-induced cell death of gammadelta cells.   总被引:1,自引:0,他引:1  
Activated gammadelta T cells undergo apoptosis upon restimulation of their T cell receptor (TCR)/CD3 complex. We demonstrate that in these cells, the activation-induced cell death (AICD) is mediated by Fas and Fas ligand (FasL) interaction. The activated gammadelta T cells are prone to AICD initiated by exposure to mitogens, anti-TCR/CD3 antibodies, as well as specific antigens such as Daudi cells or ethylpyrophosphate (Etpp). Cells that have been activated twice, and consequently more susceptible to AICD than primary cells, display augmented tyrosine phosphorylation in comparison with control cells. These studies outline a mechanism that may regulate gammadelta T cell activities in immune responses and limit the expansion of activated T cells repeatedly exposed to antigens.  相似文献   

13.
The central role of T lymphocytes in the initiation, regulation and propagation of autoimmune diseases defines them as most suitable targets for selective immunotherapy. The recent advance in culturing human and animal T cell lines allows us to select monoclonal antibodies specific for differentiation antigens expressed by activated T lymphocytes. We selected a monoclonal antibody cytotoxic for a subpopulation of activated rat T cells. In vivo, this antibody effectively blocks immune responses to foreign antigens or autoantigen and prevents development of autoimmune diseases like experimental allergic encephalomyelitis and adjuvant arthritis. Even already established disease can be blocked by a single injection of antibody. Furthermore, this monoclonal antibody can be used to monitor the course of autoimmune disease progression from peripheral blood samples.  相似文献   

14.
Homeostasis in the immune system depends on a balance between the responses that control infection and tumour growth and the reciprocal responses that prevent inflammation and autoimmune diseases. It is now recognized that regulatory T cells have a crucial role in suppressing immune responses to self-antigens and in preventing autoimmune diseases. Evidence is also emerging that regulatory T cells control immune responses to bacteria, viruses, parasites and fungi. This article explores the possibility that regulatory T cells can be both beneficial to the host, through limiting the immunopathology associated with anti-pathogen immune responses, and beneficial to the pathogen, through subversion of the protective immune responses of the host.  相似文献   

15.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

16.
Allergic asthma is a chronic inflammatory disease and despite the introduction of potent and effective drugs, the prevalence has increased substantially over the past few decades. The explanation that has attracted the most attention is the 'hygiene hypothesis', which suggests that the increase in allergic diseases is caused by a cleaner environment and fewer childhood infections. Indeed, certain mycobacterial strains can cause a shift from T-helper cell 2 (Th2) to Th1 immune responses, which may subsequently prevent the development of allergy in mice. Although the reconstitution of the balance between Th1 and Th2 is an attractive theory, it is unlikely to explain the whole story, as autoimmune diseases characterized by Th1 responses can also benefit from treatment with mycobacteria and their prevalence has also increased in parallel to allergies. Here we show that treatment of mice with SRP299, a killed Mycobacterium vaccae-suspension, gives rise to allergen-specific CD4+CD45RB(Lo) regulatory T cells, which confer protection against airway inflammation. This specific inhibition was mediated through interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta), as antibodies against IL-10 and TGF-beta completely reversed the inhibitory effect of CD4+CD45RB(Lo) T cells. Thus, regulatory T cells generated by mycobacteria treatment may have an essential role in restoring the balance of the immune system to prevent and treat allergic diseases.  相似文献   

17.
Immune regulation by self-reactive T cells is antigen specific   总被引:8,自引:0,他引:8  
Immune regulation plays an important role in the establishment and maintenance of self-tolerance. Nevertheless, it has been difficult to conclude whether regulation is Ag specific because studies have focused on polyclonal populations of regulatory T cells. We have used in this study a murine transgenic model that generates self-reactive, regulatory T cells of known Ag specificity to determine their capacity to suppress naive T cells specific for other Ags. We show that these regulatory cells can regulate the responses of naive T cells with the same TCR specificity, but do not inhibit T cell proliferation or differentiation of naive T cells specific for other Ags. These results demonstrate that immune regulation may be more Ag specific than previously proposed.  相似文献   

18.
An overview of regulatory T cells   总被引:3,自引:0,他引:3  
The induction of tolerance is essential for the maintenance of immune homeostasis and for the prevention of autoimmune diseases. To induce tolerance the immune system uses several mechanisms, including the deletion of autoreactive T cells, the induction of anergy and active suppression of autoimmune responses. The mechanisms of thymic deletion and anergy of autoreactive T cells are well characterized, whereas active suppression by T regulatory cells, which has recently emerged as an essential component of the immune response to induce peripheral tolerance, is less well understood. Results from seminal studies by a number of laboratories have renewed interest in (CD4(+)) T cells with regulatory properties and some of the researchers who have been involved in this effort have contributed to this Forum on regulatory T cells. This general overview on regulatory T cells comments on recent results in the field of regulatory T cells and presents our current knowledge on Tr1 T cells.  相似文献   

19.
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.  相似文献   

20.
We have developed and described a new method of altering T cell-mediated autoimmune diseases by immunization with the complementary peptide against T cell epitopes. The complementary peptide (denoted NAE 07-06) to the bovine P2 protein, residues 60-70 (denoted EAN 60-70), was tested in the Lewis rat model of experimental allergic neuritis (EAN). Immunization with NAE 07-06 induced polyclonal and monoclonal Abs that inhibited the proliferation of the P2-specific T cell line, stimulated with EAN 60-70, and recognized Vbeta, but not Valpha, of TCRs. Proliferation of T cells treated with anti-NAE 07-06 Abs could be partially restored by treatment with rIL-2, in accordance with an anergy model. A homologous sequence was found between NAE 07-06 and the VDJ junction of the TCR beta-chain from an EAN 60-70-specific T cell line. Rats preimmunized with NAE 07-06 in vivo before EAN induction showed less disease severity clinically and histologically. These data suggest a new therapeutic approach for T cell-mediated autoimmune disorders through the induction of anti-TCR Abs with complementary peptide Ags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号