首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Human immunodeficiency virus type 1 (HIV-1) can establish latent infection following provirus integration into the host genome. NF-kappaB plays a critical role in activation of HIV-1 gene expression by cytokines and other stimuli, but the signal transduction pathways that regulate the switch from latent to productive infection have not been defined. Here, we show that ERK1/ERK2 mitogen-activated protein kinase (MAPK) plays a central role in linking signals at the cell surface to activation of HIV-1 gene expression in latently infected cells. MAPK was activated by cytokines and phorbol 12-myristate 13-acetate in latently infected U1 cells. The induction of HIV-1 expression by these stimuli was inhibited by PD98059 and U0126, which are specific inhibitors of MAPK activation. Studies using constitutively active MEK or Raf kinase mutants demonstrated that MAPK activates the HIV-1 long terminal repeat (LTR) through the NF-kappaB sites. Most HIV-1 inducers activated NF-kappaB via a MAPK-independent pathway, indicating that activation of NF-kappaB is not sufficient to explain the activation of HIV-1 gene expression by MAPK. In contrast, all of the stimuli activated AP-1 via a MAPK-dependent pathway. NF-kappaB and AP-1 components c-Fos and c-Jun were shown to physically associate by yeast two-hybrid assays and electrophoretic mobility shift assays. Coexpression of NF-kappaB and c-Fos or c-Jun synergistically transactivated the HIV-1 LTR through the NF-kappaB sites. These studies suggest that MAPK acts by stimulating AP-1 and a subsequent physical and functional interaction of AP-1 with NF-kappaB, resulting in a complex that synergistically transactivates the HIV-1 LTR. These results define a mechanism for signal-dependent activation of HIV-1 replication in latently infected cells and suggest potential therapeutic strategies for unmasking latent reservoirs of HIV-1.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号