首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the effect of mouse interferon on the stimulation of [86Rb+] uridine, 2-deoxyglucose and Pi uptake and of ornithine decarboxylase activity produced by serum in quiescent cultures of Swiss 3T3 cells. We found that interferon causes a differential dose-dependent inhibition of the stimulation of ornithine decarboxylase activity and the second phase of Pi uptake. Other protein-synthesis independent or dependent events are not affected.  相似文献   

2.
The purpose of this study was to determine whether cyclic AMP (cAMP) plays any direct or indirect role in the antiproliferative effect of mouse L-cell interferon in Swiss 3T3 cells. Firstly, we found that interferon did not affect intracellular levels of cAMP in these cells in the absence or the presence of cAMP-elevating agents. Secondly, we examined the effect of interferon on the stimulation of DNA synthesis of quiescent 3T3 cells by a range of cyclic AMP-elevating agents, including cholera toxin, cAMP derivatives, and prostaglandin E, added in the presence of insulin or vasopressin. Interferon inhibited cyclic AMP-stimulated DNA synthesis as measured by incorporation of radioactive thymidine into acid-insoluble material and autoradiographic analysis of the fraction of labelled cells. Dose-response curves and kinetics of inhibition were identical to those obtained in cultures stimulated by combinations of growth factors that do not increase the intracellular level of cAMP. The inhibition by interferon of cAMP-stimulated DNA synthesis was also observed in secondary cultures of mouse embryo fibroblasts, where cAMP-elevating agents provide a mitogenic signal in the absence of other added growth factors. These results show that the inhibitory effect of interferon on DNA synthesis in Swiss 3T3 cells is not mediated by cyclic AMP.  相似文献   

3.
Our results show that an insulin-like growth factor binding protein, IGFBP-3, purified from rat serum, is an inhibitor of chick embryo fibroblast (CEF) growth. It abolished DNA synthesis in CEF stimulated by IGF-I as well as by human serum. Rat IGFBP-3 and IDF45 (an inhibitory diffusible factor secreted by mouse cells) had the same activities, confirming that they have an intrinsic capacity to inhibit serum stimulation and may be considered as growth inhibitors. Our data show that inhibition by IGFBP-3 of serum stimulation was not simply the result of its inhibition of IGF present in the serum: 1) While anti-IGF-I IgG was able to completely inhibit stimulation induced by added IGF-I, it did not decrease stimulation induced by 1% human serum. Anti-IGF-II IgG inhibited the stimulation induced by added IGF-II, but only 25% decreased the stimulation induced by 0.7% serum. The percent inhibition was not significantly increased when the concentration of serum was decreased to 0.2%, which induced 140% stimulation of DNA synthesis; 2) stimulation by 0.2% serum was much more inhibited by IGFBP-3 than by IgG anti IGF-II; 3) after separation of IGF-I and IGF-II from serum by chromatography of acidified serum proteins on BioGel P150, the remaining serum proteins (with a molecular mass greater than 45 kDa) which were depleted in IGF-I and -II (verified by RIA determination) still stimulated DNA synthesis, and this stimulation was 80% inhibited by IGFBP-3.  相似文献   

4.
Treatment of HeLa-S3 cells in suspension cultures with 60 microM 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) for 18-30 hr stops the growth of the cell population when treatment is carried out at 37 degrees C in Eagle's spinner culture medium supplemented with 5% fetal bovine serum. The length of the period of no growth after termination of treatment is directly related to the duration of DRB treatment. Upon resumption of growth, the rate becomes exponential and is not distinguishably different from the control rate (doubling time: 19 hr). The growth of the progeny population of the previously DRB-treated cells is as sensitive to inhibition by DRB as the growth of control populations not treated with DRB. After treatment of cells with DRB for 30 hr at 39.5-40 degrees C, the population which grows out has a prolonged doubling time. DRB treatment at 37 degrees C for 5 hr markedly inhibits uridine uptake and cellular RNA synthesis in the presence either of 5 or 15% serum. After treatment for 48 hr in 15% serum, inhibition of RNA synthesis by DRB is significantly decreased. DRB treatment does not inhibit leucine uptake in HeLa cells growing in suspension cultures. Protein synthesis is moderately inhibited in 5% serum and only slightly inhibited in 15% serum after either 5- or 48-hr period of treatment.  相似文献   

5.
6.
7.
1. When chick-embryo cells were treated with ultraviolet-inactivated influenza virus (Melbourne strain), interferon was produced after a lag period of about 10hr. 2. The addition of small amounts of either puromycin or p-fluorophenylalanine immediately after the virus inhibited the subsequent production of interferon. Both inhibitors primarily affected protein synthesis, and it is concluded that interferon production involves new protein synthesis. 3. Results obtained by the addition of either inhibitor for short periods during the lag phase demonstrated a requirement for protein synthesis during the second half of the lag phase. 4. Addition of puromycin during the course of interferon production caused almost immediate inhibition, but interferon formation became insusceptible to the action of p-fluorophenylalanine at about 26hr. after infection. Possible explanations of this effect are discussed.  相似文献   

8.
R Barra  B Beres  M R Koch  M A Lea 《Cytobios》1976,17(66):123-136
The effects of exogenous proteins on the incorporation of [3H]-thymidine into DNA was studied in Novikoff hepatoma ascites cells incubated in Eagle's minimal essential medium. A liver cytosol fraction (8 mg protein/ml) caused approximately 80% inhibition of isotope incorporation. The inhibitory activity of cytosol fractions from Morris hepatomas 9618A2, 5123C, and 20 were inversely related to their growth rate. Under conditions in which there appeared to be a density dependent inhibition of growth, a mean 10-20% stimulation of isotope incorporation was observed after addition of total calf thymus histones and individual fractions in the concentration range of 100-400 microgram/ml. In experiments with lower cell concentrations, a 60% or greater increase in [3H]-thymidine incorporation could be obtained with total calf thymus histone and with F1 and arginine-rich histones from rat liver. At concentrations of 1-2 mg/ml, histones inhibited DNA synthesis. Bovine serum albumin had little effect on DNA synthesis. Polylysine caused an 80-90% inhibition at a concentration of 1 mg/ml, but stimulatory effects were detected under certain conditions at 10 microgram/ml. The results suggest critical dependence on the ratio of cell and exogenous protein concentration in the action of proteins on DNA synthesis.  相似文献   

9.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

10.
In quiescent cultures of rabbit aortic smooth muscle cells, whole blood serum-induced DNA synthesis was inhibited markedly by protein kinase C-activating 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and phorbol-12, 13-dibutyrate (PDBu), cyclic AMP-derivatives, such as dibutyryl cyclic AMP (Bt2cAMP) and 8-bromo-cyclic AMP, and interferon alpha/beta. Neither TPA nor interferon alpha/beta elevated the cellular cyclic AMP level. Neither Bt2cAMP nor interferon alpha/beta induced the phospholipase C-mediated hydrolysis of phosphoinositides. The down-regulation of protein kinase C by prolonged treatment with PDBu abolished the antiproliferative action of TPA but did not affect that of Bt2cAMP or interferon alpha/beta. TPA and Bt2cAMP inhibited the serum-induced DNA synthesis when added within 12 h after the addition of the serum, while interferon alpha/beta was active only when added within 6 h. These results suggest that there are at least three independent signaling systems, protein kinase C- and cyclic AMP-mediated systems and an unidentified system for interferon alpha/beta, which are involved in the antiproliferative mechanisms in rabbit aortic smooth muscle cells.  相似文献   

11.
A highly purified rabbit interferon was tested for its capacity to inhibit various manifestations of infection of primary rabbit kidney (RK) cells with vesicular stomatitis (VS) virus. A kinetic analysis of the actinomycin-sensitive phase of interferon-induced cellular resistance revealed that RK cells could transcribe virtually all of the hypothetical antiviral messenger ribonucleic acid (mRNA) within 3 hr. Similar exposure to interferon reduced virus yield by 95 to 99% and markedly inhibited cytopathic effect on RK cells infected at a multiplicity of 10 or less. Interferon was less effective in blocking cytopathic effects when RK cells were infected at a multiplicity of 100. However, RK cells pretreated with the same amount of interferon and infected at a multiplicity of 100 failed to incorporate (3)H-amino acids into structural or nonstructural proteins of VS virus identified by polyacrylamide gel electrophoresis. Despite this inhibition of viral protein synthesis, interferon did not prevent the switch off by VS virus of cellular protein synthesis. The rapidity with which a high multiplicity of VS virus switched off cellular protein synthesis, even in cells rendered resistant to viral infection by interferon, is further evidence that this reaction is caused by an infecting virion component rather than by a newly synthesized viral product.  相似文献   

12.
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms.  相似文献   

13.
14.
A M Wu  A Schultz    R C Gallo 《Journal of virology》1976,19(1):108-117
Previous studies have shown that in certain cell systems dexamethasone may enhance the production of type C viruses. Conversely, interferon has been shown to inhibit their production. Both appear to exert their influence late in the viral replication cycle rather than on the synthesis of viral-specific RNA. In this report dexamethasone and interferon have been used to study some aspects of the mechanisms involved in the synthesis of type C viruses in murine K-BALB cells following induction of virus production by iododeoxyuridine. Interferon inhibited production of xenotropic type C virus induced by iododeoxyuridine from K-BALB cells both in the absence and presence of dexamethasone, but it did not affect production of N-tropic type C virus. Exposure of the cells to interferon for longer than 12 h was required for maximum effect. Two types of inhibitory effects were observed: one diminished by dexamethasone when the steroid was added 24 h after interferon removal, and the second resistant to dexamethasone. The concentration of intracellular group-specific antigen was diminshed after interferon and increased after dexamethasone exposure. When induced cells were treated with both interferon and dexamethasone, the intracellular group-specific protein concentration was slightly increased, but virus production was reduced 10-fold compared with induced cells treated with dexamethasone alone. We conclude that interferon and dexamethasone may affect both the synthesis of viral proteins and the assembly or release of virus particles and that dexamethasone can partially nullify the inhibitory activity of interferon. The results also support previous conclusions that the regulatory mechanisms for synthesis of viral proteins and for the release of viral particles may differ and that controls for xenotropic and ecotropic virus formation may not be identical.  相似文献   

15.
Regulation of protein accumulation in cultured cells.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. A technique is described whereby protein synthesis, protein breakdown and net protein accumulation are measured separately in monolayer cultures of mammalian cells. All rates are expressed as microgram of protein per 18 h incubation. 2. Under most incubation conditions with either L6 rat myoblasts or T47D human breast carcinoma cells the rates of protein accumulation, determined directly, agreed with the rates obtained by subtracting protein breakdown from protein synthesis. 3. Foetal calf serum, human and bovine colostrum, human milk and insulin increased protein accumulation in both cell lines, mainly as a consequence of effects on protein synthesis. 4. NH4Cl, in addition to inhibiting protein breakdown in both cell lines in the presence and in the absence of serum, stimulated protein synthesis in L6 myoblasts. 5. Leupeptin slightly inhibited protein breakdown without affecting protein-synthesis rates. 6. Cycloheximide almost completely inhibited protein synthesis, but restricted the net loss of cell proteins under most conditions because protein-breakdown rates were also decreased. 7. The assumptions, limitations and potential application of this technique for evaluating changes in protein turnover are described.  相似文献   

16.
Abstract The temperature-sensitive dna mutants of the budding yeast Saccharomyces cerevisiae (Dumas et al. (1982) Mol. Gen. Genet. 187, 42–46) are more inhibited in DNA synthesis than in protein synthesis. These properties are also characteristics of many yeast mutations that inhibit progress through the cell cycle. Therefore we surveyed the collection of dna mutants for cell-cycle mutations. By genetic complementation we found that dna 1 = cdc 22, dna 6 = cdc 34, dna 19 = cdc 36, and dna 39 = dbf 3. Furthermore, by direct gene cloning we found that the dna26 mutation is allelic to prt1 mutations, which are known to exert primary inhibition on protein synthesis. This protein-synthesis mutation exerts a dna phenotype due to cell-cycle inhibition: prt1 mutations can block the regulatory step of the cell cycle while allowing significant amounts of protein synthesis to continue. Our non-exhausive screening suggests that the dna mutants may house other mutations that affect the yeast cell cycle.  相似文献   

17.
Regulation of thymidine kinase activity in the cell cycle by a labile protein   总被引:10,自引:0,他引:10  
Previous studies have shown that the onset of DNA synthesis in Balb/c 3T3 cells appears to be regulated by a labile protein. We have found that induction of thymidine kinase (TK) activity, after quiescent cells are stimulated by the addition of serum, is similarly regulated by a labile protein. Eight hours after serum stimulation, a 6-h pulse of cycloheximide (CHM) caused an excess delay of 2 h in TK induction. A similar delay also was found in the induction of thymidylate synthase (TS). In contrast, the benzo(a)pyrene transformed 3T3 cell line, BP-A31, which had previously been shown to have no excess delay for the onset of DNA synthesis also had no excess delay for the induction of TK activity after a pulse of CHM. The induction of TK was inhibited by actinomycin D and dichlororibofuranosylbenzimidizole (DRB) suggesting a requirement for new RNA synthesis. It did not appear to depend on DNA synthesis as it was not blocked by aphidicolin. In conclusion, the induction of TK activity appears to be regulated by the same labile cellular signal as the onset of DNA synthesis, and to depend on an increase in the level of TK mRNA in late G1 or early S phase.  相似文献   

18.
Vasopressin and bradykinin bind to receptors coupled to GTP-binding proteins and rapidly induce polyphosphoinositide breakdown leading to Ca2+ mobilization and activation of protein kinase C. Both peptides are known to induce mitogenesis in the presence of growth factors that act through receptors with intrinsic tyrosine kinase activity. Surprisingly, addition of a combination of vaso-pressin and bradykinin to Swiss 3T3 cells synergistically stimulates DNA synthesis in the absence of any other growth factors. This effect is induced at nanomolar concentrations of the peptides and could be inhibited by addition of specific receptor antagonists or broad spectrum neuropeptide antagonists. Bradykinin, which stimulates transient activation of protein kinase C, induces DNA synthesis in synergy with substances that cause long-term activation of protein kinase C, like vasopression or phorbol 12, 13-dibutyrate. Down-regulation of protein kinase C inhibited the induction of mitogenesis by the combination of vasopressin and bradykinin, thus demonstrating the importance of long-term activation of this enzyme for DNA synthesis. Analysis of tyrosine phosphorylated proteins of Mr = 110,000–130,000 and Mr = 70,000–80,000 revealed a biphasic response after stimulation with bradykinin, whereas the response induced by vasopressin declined after the initial maximum. The combination of bradykinin with vasopressin caused an enhanced and prolonged increase in tyrosine phosphorylation of these proteins as compared with the individual peptides. Inhibition of tyrosine phosphorylation by tyrphostin was paralleled by inhibition of DNA synthesis. Together, these results demonstrate synergistic stimulation of DNA synthesis by bradykinin and vasopressin via prolonged stimulation of multiple signaling pathways and imply that the interactive effects of Ca2+ -mobilizing peptides on mitogenesis may be more general than previously thought. © 1994 Wiley-Liss, Inc.  相似文献   

19.
We have recently shown that beside a general stimulation of most adrenal proteins, corticotropin induces a marked increase in a specific adrenal cytosolic protein, protein E, in intact and hypophysectomized rats. To further clarify the mechanisms by which corticotropin exerts its trophic action we have investigated the effects of cycloheximide, calcium and calcium chelator administration on intact and hypophysectomized animals. These substances were injected in rats with or without corticotropin, and slices of adrenal glands from control and treated animals were removed 5 h later, incubated with [14C]- or [3H]-leucine for 2 h, and cytosolic proteins analyzed by polyacrylamide gel electrophoresis using a dual labelling technique. When high doses of cycloheximide (higher than 500 micrograms) were injected in rats, incorporation of labelled leucine in adrenal slices of control and corticotropin-treated animals was inhibited. With 500 micrograms cycloheximide per rat, incorporation of labelled leucine in adrenal slices of control animals was normal, but the corticotropin stimulation of both protein E and total protein synthesis was inhibited. Lower doses of cycloheximide (100 micrograms per rat) completely inhibited the stimulatory effect of corticotropin on total protein synthesis but did not affect protein E synthesis, while after 50 micrograms per rat both stimulatory effects were preserved. The two higher doses of cycloheximide (500 and 100 micrograms per rat) could not completely block the steroidogenic effect of the hormone. The effects of calcium and calcium chelators were studied in 1-day hypophysectomized rats. Calcium alone or injected simultaneously with corticotropin has no effect. Calcium chelators injected simultaneously with corticotropin partially inhibited the stimulatory effects of corticotropin on steroidogenesis but totally inhibited stimulation of total protein synthesis, while the stimulation of protein E persisted. Our results show that after corticotropin, stimulation of protein E synthesis correlates better with steroidogenesis than with total protein synthesis.  相似文献   

20.
The effects of interferon on epidermal growth factor action   总被引:5,自引:0,他引:5  
Epidermal growth factor-stimulated thymidine incorporation in human fibroblasts is inhibited more than 80% by human interferon, whereas the stimulation of α-aminoisobutyrate uptake is unaffected. Maximum inhibition of thymidine incorporation is observed after treatment of cells with interferon prior to the onset of DNA synthesis. However, even after the initiation of DNA synthesis, interferon rapidly blocks any further increase in thymidine incorporation. Despite these effects, interferon treatment causes no alterations in epidermal growth factor binding, receptor downregulation or receptor reappearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号