首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

2.
The ability of photoautotrophic picoplankton Synechococcus to degrade urea was examined in the euphotic zone of Lake Biwa. Samples were divided into pico (0.2–2.0 μm) and larger (>2.0 μm) size fractions by filtration. The rates of urea degradation (the sum of the rates of incorporation of carbon into phytoplankton cells and of liberation of CO2 into water) measured by radiocarbon urea were 8 and 17 μmol urea m−3 day−1 in June and July, respectively, for the picophytoplankton in the surface water, and 196 and 96 μmol urea m−3 day−1, respectively for the larger phytoplankton. The rates decreased with depth, somewhat similar to the vertical profiles of the photosynthetic rate. The urea degradation rates were obviously high under light conditions. In daylight, urea was degraded into two phases, carbon incorporation and CO2 liberation, whereas in the dark it was degraded only into the CO2 liberation phase. The contribution of picophytoplankton to total phytoplankton in urea degradation was high in the subsurface to lower euphotic layer. Urea degradation activity was higher in the picophytoplankton fraction than in the larger phytoplankton fraction. Shorter residence times of urea were obtained in the upper euphotic zone. The contribution of picophytoplankton to urea cycling was 4% to 35%. The present results suggest that the picophytoplankton Synechococcus is able to degrade urea and effectively makes use of regenerated urea as a nitrogen source in the euphotic layer, and that picophytoplankton play an important role in the biogeochemical nitrogen cycle in Lake Biwa. Received: June 25, 1998 / Accepted: February 10, 1999  相似文献   

3.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

4.
Size-fractionated chlorophyll a (Chla)-specific productivity (μgC μgChla −1 h−1) was measured at 11 stations off the northern coast of the South Shetland Islands during summer. The Chla-specific productivity of the 2- to 10 or 10- to 330-μm fraction was highest at 100% and 23% light depths. The Chla-specific productivity of the 2- to 10-μm fraction was generally highest, and that of the <2 or 10- to 330-μm fraction was sometimes highest at 12% and 1% light depths. Temperature was less than 3°C within the euphotic zone at all stations. The hypothesis of Shiomoto et al., according to which Chla-specific productivity of picophytoplankton (<2 μm) is not significantly higher than that of larger phytoplankton (>2 μm) in water colder than 10°C, was supported on condition that light is not limited for larger phytoplankton. Received: 16 September 1997 / Accepted: 8 December 1997  相似文献   

5.
The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35°C, the maximal geosmin concentration and geosmin productivity were yielded at 10°C, while the highest chl a production was observed at 25°C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 μmol m−2 s−1, while the highest chl a production was at 20 μmol m−2 s−1. It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 μmol m−2 s−1, 25°C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10°C) or light (10 μmol m−2 s−1) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35°C and 20 μmol m−2 s−1. It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.  相似文献   

6.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

7.
Respiratory activity and metabolic CO2production of the microplankton in the Otranto Strait (Mediterranean Sea) were determined by monitoring the Electron Transport System activity. Ten stations were repeatedly investigated during two oceanographic surveys in February–March and August 1994. Respiratory activity and CO2 production, estimated from the surface to the bottom, were higher in the euphotic layers (0-200 m) during summer (mean values: Winter = 0.024 μg C h−1 dm−3; Summer = 0.042 μg C h−1 dm−3); in the aphotic zone (deeper than 200 m), the rates were similar throughout different seasons (0.013 and 0.014 μg C h−1 dm−3, respectively). A comparison with data collected by other authors from the euphotic layers of the Mediterranean Sea was made. Respiratory activities decreased from Western to Eastern Mediterranean Basins. The values of CO2 production, integrated between 200 and 1000 m in the Otranto Strait (mean value 237.7 mg C m−2 d−1), were compared with other data collected from the Mediterranean Sea as well as from the Pacific, Atlantic and Indian Oceans. The comparison showed the Otranto Strait to be a site of organic matter oxidation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
An investigation into the changing phytoplankton biomass and total water column production during autumn sea ice formation in the eastern Weddell Sea, Antarctica showed reduced biomass concentrations and extremely low daily primary production. Mean chlorophyll-a concentration for the entire study period was extremely low, 0.15±0.01 mg.m−3 with a maximum of 0.35 mg.m−3 found along the first transect to the east of the grid. Areas of low biomass were identified as those either associated with heavy grazing or with deep mixing and corresponding low light levels. In most cases phytoplankton in the <20-μm size classes dominated. Integrated biomass to 100 m ranged from 7.1 to 28.0 mg.m−2 and correlated positively with surface chlorophyll-a concentrations. Mean PBmax (photosynthetic capacity) and αB (initial slope of the photosynthesis-irradiance curve) were 1.25±0.19 mgC. mgChla −1.h−1 and 0.042±0.009 mgC.mgChla −1.h−1.(μmol.m−2.s−1)−1 respectively. The mean index of photoadaptation,I k, was 32.2±4.0 μmol.m−2.s−1 and photoinhibition was found in all cases. Primary production was integrated to the critical depth (Z cr) at each production station and ranged from 15.6 to 41.5 mgC.m−2.d−1. It appears that, other than grazing intensity, the relationship between the critical depth and the mixing depth (Z mix) is an important factor as, ultimately, light availability due both to the late season and growing sea ice cover severely limits production during the austral autumn.  相似文献   

9.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

10.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

11.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

12.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

13.
Seasonal changes in the microphytoplankton assemblages were examined in the coastal zone of Bozcaada Island with regard to some major physical and chemical variables. Samples were collected from May 2000 to December 2001 at four stations. A total of 108 dinoflagellates, 102 diatoms, 1 chrysophycean, 3 dictyochophycean, and 1 prasinophycean species were identified and quantified during the study period. Diatoms and dinoflagellates were the most important in terms of species number and abundance. The maximum values of total microphytoplankton were observed at 0.5 m depth (46.2 × 103 cells l−1 at st. 3) in May as this was the month when the diatom Pseudo-nitzschia pungens bloomed. Chlorophyll (chl) a concentration ranged between 0.08 (August) and 0.78 μg l−1 (February). May was another important month in which chlorophyll a increased (0.41–0.47 μg l−1). Species diversity values (Hlog2) ranged from 1.66 bits (June, 20 m) to 4.11 bits (November, 0.5 m). The increase was attributed to a more balanced distribution of abundance among species. The amounts of nitrate + nitrite (0.6−3.7 μg-at N l−1), phosphate (0.2−0.6 μg-at P l−1) and silicate (0.7−2.5 μg-at Si l−1) were recorded on each sampling occasion. Nutrient concentrations and chl a values of the research area were found to be poorer than those of the many other coastal areas in the northeastern Mediterranean. The mean atomic ratio of nitrogen to phosphorus varied from 1.3 (June) to 12.9 (February). This ratio was lower than the Redfield ratio of 16 for ocean phytoplankton, and phytoplankton was potentially limited by nitrogen for most of the months. The result of this study confirms and emphasizes the oligotrophic nature of the eastern Mediterranean.  相似文献   

14.
Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral fragments located at different light intensities, a total carotenoid of >41 μg g−1 dry weight, including peridinin, xanthophylls (likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and β-carotene were detected. The whole content of chl-a weighed 5 μg g−1 dry weight in all coral colonies. Chl-a and carotenoids contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 μmol quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 μmol quanta m−2 s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400 μmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 μmol quanta m−2 s−1. Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances above 100 μmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 μmol quanta m−2 s−1.  相似文献   

15.
A large ultra-oligotrophic Antarctic freshwater lake, Crooked Lake, was investigated between January 1993 and November 1993. The water column supported a small phytoplankton community limited by temperature, nutrient availability and, seasonally, by low photosynthetically active radiation. Chlorophyll a concentrations were consistently low (<1 g l−1) and showed no obvious seasonal patterns. Production rates were low, ranging from non-detectable to 0.56 g C l−1 h−1, with highest rates generally occurring towards the end of the austral winter and in spring. The pattern of carbon fixation indicated that the phytoplankton was adapted to low light levels. Chlorophyll a specific photosynthetic rates (assimilation numbers) ranged from non-detectable to 1.27 gC (g chlorophyll a)−1 h−1. Partitioning of photosynthetic products revealed carbon incorporation principally into storage products such as lipids at high light fluxes with increasing protein synthesis at depth. With little allochthonous input the data suggest that lake dynamics in this Antarctic system are driven by phytoplankton activity. Received: 21 February 1997 / Accepted: 18 May 1997  相似文献   

16.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

17.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

18.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

19.
In June 1992, an extensive investigation programme was carried out in the turbidity zone of the Elbe river. Special attention was paid to salinity and suspended particulate matter (SPM) and their influence on bacteria, phytoplankton, zooplankton, mysids and fish. SPM was separated into three fractions of different settling velocities. Mean settling velocity (ws) was 0.05 cm s−1. The major part of SPM belonged to the slow settling fraction (ws<0.02 cm s−1). Bacterial exoenzymatic activity showed a positive correlation with SPM and chlorophyll-a content, and also to total dissolved free amino acids. Phytoplankton biomass reached maximum values of 5.7 μg chlorophyll-a l−1 at ebb tide. Chlorophyll-a correlated negatively with salinity, indicating riverine input of phytoplankton. A positive correlation was found between chlorophyll-a and dissolved oxygen. Abundance of zooplankton species and their developmental stages varied over the tidal cycles; abundance of cirriped larvae and copepodite stages of the dominant speciesEurytemora affinis (Copepoda, Crustacea) was positively correlated with salinity. Individual filtering rates (IFR) ofEurytemora affinis were negatively affected by the SPM content of the water. Maximum IFR for adults was 7.2 ml h−1. Community grazing reached maximum rates of 30.3 ml l−1 h−1 (i.e. 72.7% d−1). The dominant mysidNeomysis integer showed maximum abundance at night, possibly resulting from diel vertical migration. Abundance ofN. integer was positively correlated with SPM content. The fish community, consisting of 17 fish species, was characterised by high densities of smelt (Osmerus eperlanus). A positive correlation was found between salinity and abundance of typical marine fish species, such as sprat (Sprattus sprattus). Similar temporal variation of abundance of smelt, sprat, andEurytemora copepodites indicates processes of habitat preference of these planktivorous fish in relation to optimal food supply. SPM was the factor controlling both distribution of organisms and the turnover of nutrients. Salinity only was important for the distribution of organisms.  相似文献   

20.
Ecology of a marineRivularia population   总被引:1,自引:1,他引:0  
An account is given of the environmental chemistry and physiological ecology of a population ofRivularia atra growing in the upper eulittoral of Tyne Sands, a sheltered bay in S-E. Scotland. Large masses of detached seaweed tend to be deposited in the supralittoral of this bay and their decay leads to elevated levels of dissolved phosphate (typically 50–150 μg 1−1 P) in the water of shallow pools of the upper eulittoral. Much (usually 50%) of this phosphate is organic, as opposed to phosphate in the open sea just outside the bay, where it is almost entirely inorganic. This organic phosphate is presumably available to theRivularia, as colonies show marked alkaline phosphatase activity. The colonies are small (mostly <1 mm diameter), but with a high nitrogenase activity (expressed per unit chlorophyll) in the light are high (sometimes approaching 0.2 nM C2H4 μg chl a−1 min−1 × 10−3) but there is a rapid and very marked drop on transfer to the dark. It is suggested that this latter feature may be of adaptive significance for this population, as colonies in many pools are covered intermittently by sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号