首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the germination of pumpkin (Cucurbita sp. Amakuri Nankin) seeds in dark, the activity of glutamine synthetase in cotyledons gradually increased, reaching a maximum at 5 to 6 days. A measurable enhancement (about 4-fold) of the enzyme activity occurred when the seedlings were exposed to continuous illumination from day 4 up to day 8. Glutamine synthetase activity was detectable only in the cytosolic fraction in the etiolated cotyledons, whereas it was found both in the cytosolic and chloroplast fractions in the green cotyledons. The two isoenzymes of glutamine synthetase have been separated by DEAE-cellulose column chromatography of extracts from the green cotyledons. These data indicate that during the greening process the chloroplastic glutamine synthetase is newly synthesized. The roles of cytosolic and chloroplastic glutamine synthetase in germinating pumpkin cotyledons concerning assimilation of NH3 are discussed.  相似文献   

2.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

3.
In a study of the plant communities of two Australian rainforests, it was found that pioner species had high levels of nitrate reductase (EC 1.6.6.1) and were predominantly leaf nitrate assimilators. Under- and over-storey species had low levels of shoot and root nitrate reductase activity, and many of them showed little capacity for nitrate reduction even when nitrate ions were freely available. Although closed-forest species have lower levels of nitrate reductase than those of gaps and forest margins, their total nitrogen contents were similar, suggesting the former utilize nitrogen sources other than nitrate ions. Glutamine synthetase (EC 6.3.1.2) was present in the leaves of all species examined. In the leaves of pioneer species the chloroplastic isoform of glutamine synthetase predominted, while in most of the species typical of closed-forest the cytosolic isoform accounted for at least 40% of total leaf activity. Low levels of chloroplastic glutamine synthetase were correlated with a low capacity for leaf nitrate reduction, and both are characteristic of many species that regenerate and grow for some time in shade. Low levels of chloroplastic glutamine synthetase imply that, in some of these woody plants, photorespiratory ammonia is re-assimilated via cytosolic glutamine synthetase.  相似文献   

4.
Anion exchange chromatography and immunoprecipitation have been used to demonstrate the presence of two forms (GS1, and GS2) of glutamine synthetase in the leaves of nine species of Panicum representative of C3, C4 and C3-C4 intermediate-type photosynthesis. GS2 from the Panicum species, P. miliaceum and P. maximum was more thermostable than GS1, GS1, and GS2 from P. laxum were equally thermostable but GS2 from all the Panicum species examined was more sensitive to inhibition by N-ethylmaleimide than GS1. GS1, and GS2 were characterised as being cytoplasmic and chloroplastic isoforms respectively by their reaction with N-ethylmaleimide and by immunoprecipitation with antibodies raised against the cytosolic isoform in barley and the chloroplastic form in tobacco. C3 species were found to have higher activity of the chloroplastic isoform of glutamine synthetase than C4 species. C3-C4 intermediate species had total leaf glutamine synthetase activities similar to those in C3 species but were found to have a lower chloroplastic isoform content. The results are consistent with the reassimilation of photorespiratory ammonia by chloroplastic glutamine synthetase.  相似文献   

5.
Glutamine synthetases from roots, nodules, and leaves of Phaseolus vulgaris L. have been purified to homogeneity and their polypeptide composition determined.

The leaf enzyme is composed of six polypeptides. The cytosolic fraction contains two 43,000 dalton polypeptides and the chloroplastic enzyme is formed by four 45,000 dalton polypeptides. Root glutamine synthetase consists only of the same two polypeptides of 43,000 dalton that are present in the leaf enzyme. The nodule enzyme is formed by two polypeptides of 43,000 dalton, one is common to the leaf and root enzyme but the other is specific for N2-fixing nodule tissue. The two glutamine synthetase forms of the nodule contain a different proportion of the 43,000 dalton polypeptides.

  相似文献   

6.
The major isoenzyme of glutamine synthetase found in leaves of angiosperms is the chloroplastic form. However, pine seedlings contain two cytosolic glutamine synthetases in green cotyledons: GS1a, the predominant isoform, and GS1b, a minor enzyme whose relative amount is increased following phosphinotricin treatment. We have cloned a GS1b cDNA, and comparison with the previously reported GS1a cDNA sequence indicated that they correspond to separate cytosolic GS genes encoding distinct protein products. Phylogenetic analysis showed that the newly reported sequence is closer to cytosolic angiosperm GS than to GS1a, suggesting therefore that GS1a could be a divergent gymnospermous GS1 gene. Gene mapping using a F2 family of maritime pine showed co-localization of both GS genes on group 2 of the genetic linkage map. This result supports the proposed origin of different members of the GS1 family by adjacent gene duplication. The implications for gymnosperm genome organization are discussed.  相似文献   

7.
A spontaneous double mutant of Chlamydomonas reinhardtii, designated ARF3, was resistant to L-methionine-S-sulfoximine (MSX), lacked chloroplastic glutamine synthetase (GS2) activity, and grew very poorly in all media tested. In segregants obtained after genetic crosses, the poor-growth phenotype was always linked to the lack of GS2 and to a diminished rate of consumption of ammonium, even under conditions where photorespiration was minimized. The ammonium permeases in mutant ARF3, however, were not altered. This indicates that, unlike in higher plants, GS2 contributes substantially to the primary assimilation of ammonia in this alga, and that its function cannot be replaced by the cytosolic glutamine synthetase. In genetic crosses, the MSX resistance and the lack of GS2 segregated independently, indicating that resistance was not due to an altered form of GS2. Received: 5 June 1998 / Accepted: 10 September 1998  相似文献   

8.
9.
Cellular localization of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) in vascular bundles of leaf blades of rice (Oryza sativa L.), at the stage at which leaf blades 6 (the lowest position) to 10 were fully expanded, was investigated immunocytologically with an affinity-purified anti-GS1 immunoglobulin G. Strong signals for GS1 protein were detected in companion cells of large vascular bundles when blades 6–8 were tested. Signals for GS1 were also observed in vascular-parenchyma cells of both large and small vascular bundles. The results further support our hypothesis that GS1 is important for the export of leaf nitrogen from senescing leaves. The signals in companion cells were less striking in the younger green leaves and were hardly detected in the non-green portion of the 11th blade. In the non-green blades, strong signals for GS1 protein were detected in sclerenchyma and xylemparenchyma cells. When total GS extracts prepared from the 6th,10th, and the non-green 11th blades were subjected to anion-exchange chromatography, the activity of GS1 was clearly separated from that of chloroplastic GS, indicating that GS1 proteins detected in the vascular tissues were able to synthesize glutamine. The function of GS1 detected in the developing leaves is discussed.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GS1 cytosolic glutamine synthetase - GS2 plastidic glutamine synthetase - IgG immunoglobulin G  相似文献   

10.
Anthony Haystead 《Planta》1973,111(3):271-274
Summary A glutamine synthetase has been localised in the chloroplasts of Vicia faba. The enzyme has requirements for Mg2+ and ATP in the biosynthetic reaction and in addition will catalyse a -glutamyl transferase reaction in the presence of Mn2+ and arsenate. The enzyme is inhibited by AMP, CTP, glycine and alanine. These results are discussed in relation to the possible chloroplastic synthesis of nucleotide bases. Estimations of glutamine amide-2-oxoglutarate amino transferase (oxido-reductase) have demonstrated only low levels of activity in the chloroplast extracts. This enzyme is generally active in organisms where GS has an assimilary role. It is coneluded that glutamine synthetase has a biosynthetic and not an assimilatory role in the chloroplast.  相似文献   

11.
In two tobacco mutants lacking ribulose, 1,5-bisphosphate carboxylase/oxygenase the amount of glutamine synthetase and its activity were determined and compared with the wild type green cells. It was shown that in these two mutants glutamine synthetase protein content was six times lower than in the wild type. This situation was comparable to that found in etiolated cells where ribulose 1,5-bisphosphate carboxylase/oxygenase was absent. These observations suggest that a common regulatory mechanism might control the dual light dependent biosynthesis of both enzymes. The results have also implications concerning the efficiency of the reassimilation of ammonia by chloroplastic glutamine synthetase during the photorespiratory process.  相似文献   

12.
Changes in the levels of cytosolic and chloroplastic isoforms of glutamine synthetase were examined in senescing radish (Raphanus sativus L. cv Comet) cotyledons by immunoblotting analysis using antibodies raised separately against maize glutamine synthetase isoforms. Translatable mRNAs for these isoforms were also examined by analyzing translation products from poly(A)+ RNA in a wheat germ system with the antibodies. The relative content of cytosolic isoform (GS1) increased twofold in the cotyledons that were placed in the dark for 72 hours to accelerate senescence, while that of chloroplastic isoform (GS2) declined to half of its initial level. The dark-treatment also increased the relative level of translatable mRNA for GS1 sevenfold after 72 hours, and decreased rapidly that for GS2 and for other nuclear-coded chloroplast proteins as well. Cotyledons also accumulated GS1 mRNA when they became senescent after a lengthy growth period under continuous light. These observations suggested that GS1 genes were activated, while those for GS2 were repressed, and eventually the population of the enzyme was altered in senescent cotyledonary cells. The role of increased cytosolic enzyme is discussed in relation to the nitrogen metabolism in senescent leaves.  相似文献   

13.
Glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design herbicidal α- and γ-substituted analogs of phosphinothricin (l-2-amino-4-(hydroxymethylphosphinyl)butanoic acid, PPT), a naturally occurring GS inhibitor and a potent herbicide. The substituted phosphinothricins inhibit cytosolic sorghum GS1 and chloroplastic GS2 competitively versusl-glutamate, with Ki values in the low micromolar range. At higher concentrations, these inhibitors inactivate glutamine synthetase, while dilution restores activity through enzyme-inhibitor dissociation. Herbicidal phosphinothricins exhibit low Ki values and slow enzyme turnover, as described by reactivation characteristics. Both the GS1 and GS2 isoforms of plant glutamine synthetase are similarly inhibited by the phosphinothricins, consistent with the broad-spectrum herbicidal activity observed for PPT itself as well as other active compounds in this series.  相似文献   

14.
15.
Manipulation of the CO2 concentration of the atmosphere allows the selection of photorespiratory mutants from populations of seeds treated with powerful mutagens such as sodium azide. So far, barley lines deficient in activity of phosphoglycolate phosphatase, catalase, the glycine to serine conversion, glutamine synthetase, glutamate synthase, 2-oxoglutarate uptake and serine: glyoxylate aminotransferase have been isolated. In addition one line of pea lacking glutamate synthase activity and one barley line containing reduced levels of Rubisco are available. The characteristics of these mutations are described and compared with similar mutants isolated from populations of Arabidopsis. As yet, no mutant lacking glutamine synthetase activity has been isolated from Arabidopsis and possible reasons for this difference between barley and Arabidopsis are discussed. The value of these mutant plants in the elucidation of the mechanism of photorespiration and its relationships with CO2 fixation and amino acid metabolism are highlighted.Abbreviations GS cytoplasmic glutamine synthetase - GS2 chloroplastic glutamine synthetase - PFR Photon fluence rate - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SGAT serine:glyoxylate aminotransferase  相似文献   

16.
A single degenerate glutamine synthetase (GS)-specific primer was used to amplify the 3′ end of cDNAs derived from different GS genes that are expressed in leaves and roots of sunflower (Helianthus annuus L. cv. Peredovic). Four types of GS cDNA (I, II, III and IV) were simultaneously amplified from leaves and five types (I, II, V, VI, VII) from roots with a minimum investment of time and experimental work. cDNAs II, III and IV encode chloroplastic isoforms as deduced by the presence of chloroplastic GS-specific features in their sequences. The rest of cDNAs codifies cytosolic isoforms. Using cDNA-specific probes and primers, homologous sequences to all GS cDNAs amplified from cv. Peredovic, except to cDNAs III and IV, were detected in the inbred line R41. This result strongly suggests that the three cDNAs for chloroplastic isoform are allelic sequences from the same locus, and since cDNA type IV contains sequences derived from cDNAs II and III, it indicates a recombinational origin. The results presented are consistent with the existence of a GS gene family in sunflower with at least five members. Four of them, named ggs1.1 to ggs1.4, codify for the cytosolic isoforms (cDNAs I, V, VI and VII). A fifth member, named ggs2, from which three allelic sequences (cDNAs II, III and IV) have been cloned, encodes the chloroplastic isoform. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Four intracellular proteases partially purified from liver preferentially degraded the oxidatively modified (catalytically inactive) form of glutamine synthetase. One of the proteases was cathepsin D which is of lysosomal origin; the other three proteases were present in the cytosol. Two of these were calcium-dependent proteases with different calcium requirements. The low-calcium-requiring type (calpain I) accounted for most of the calcium-dependent activity of both mouse and rat liver. The calcium-independent cytosolic protease, referred to as the alkaline protease, has a molecular weight of 300,000 determined by gel filtration. Native glutamine synthetase was not significantly degraded by the cytosolic proteases at physiological pH, but oxidative modification of the enzyme caused a dramatic increase in its susceptibility to attack by these proteases. In contrast, trypsin and papain did degrade the native enzyme and the degradation of modified glutamine synthetase was only 2- to 4-fold more rapid. Adenylylation of glutamine synthetase had little effect on its susceptibility to proteolysis. Although major structural modifications such as dissociation, relaxation, and denaturation also increased the rate of degradation, the oxidative modification is a specific type of covalent modification which could occur in vivo. Oxidative modification can be catalyzed by a variety of mixed function oxidase systems present within cells and causes inactivation of a number of enzymes. Moreover, the presence of cytosolic proteases which recognize the oxidized form of glutamine synthetase suggests that oxidative modification may be involved in intracellular protein turnover.  相似文献   

18.
The catalytic activities of the chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase (PGK; EC 2.7.2.3) have been followed during the development of the first leaf of barley (Hordeum vulgare L.) grown for 7 d in darkness followed by transfer to continuous illumination. The investigation has included both the study of a standard leaf section, measured from the leaf tip, over the whole life of the leaf and the study of serial sections of leaf, measured from the leaf base, at a standard sampling time. The results of both approaches were fully compatible. As the catalytic activity of each isoenzyme in the standard assay is directly proportional to the amount of isoenzyme protein present, the catalytic activities may be interpreted wholly in terms of enzyme synthesis and degradation. Both isoenzymes are synthesized in darkness and in etiolated barley are present at a ratio of about 2674 for the cytosolic to chloroplastic isoenzymes. Illumination results in a fivefold or greater increase in chloroplast PGK over a number of days with little change of the cytosolic isoenzyme, resulting in an eventual ratio of cytosolic to chloroplastic isoenzymes approaching the green-leaf value of about 991. Prior to any detectable onset of senescence a 15-fold increase in cytosolic isoenzyme commenced while the amount of chloroplast PGK remained constant. It is suggested that the increased cytosolic PGK may be involved in the export of carbohydrate reserves (starch) prior to leaf senescence. Both isoenzymes subsequently decline in parallel to total protein and chlorophyll in the course of senescence.Abbreviations DHAP reductase dihydroxyacetone-phosphate reductase - GS glutamine synthetase - LHCP light-harvesting chlorophyll-a/b-binding protein - PGK phosphoglycerate kinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work was supported by the Science and Engineering Research Council (grant no. GR/E54504).  相似文献   

19.
Changes in the levels of cytosolic glutamine synthetase (GS1) and chloroplastic glutamine synthetase (GS2) polypeptides and of corresponding mRNAs were determined in leaves of hydroponically grown rice (Oryza sativa) plants during natural senescence. The plants were grown in the greenhouse for 105 days at which time the thirteenth leaf was fully expanded. This was counted as zero time for senescence of the twelfth leaf. The twelfth leaf blade on the main stem was analyzed over a time period of −7 days (98 days after germination) to +42 days (147 days after germination). Total GS activity declined to less than a quarter of its initial level during the senescence for 35 days and this decline was mainly caused by a decrease in the amount of GS2 polypeptide. Immunoblotting analyses showed that contents of other chloroplastic enzymes, such as ribulose-1,5-bisphosphate carboxylase/oxygenase and Fd-glutamate synthase, declined in parallel with GS2. In contrast, the GS1 polypeptide remained constant throughout the senescence period. Translatable mRNA for GS1 increased about fourfold during the senescence for 35 days. During senescence, there was a marked decrease in content of glutamate (to about one-sixth of the zero time value); glutamate is the major form of free amino acid in rice leaves. Glutamine, the major transported amino acid, increased about threefold compared to the early phase of the harvest in the senescing rice leaf blades. These observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.  相似文献   

20.
The chloroplastic glutamine synthetase of spinach leaves has been purified to homogeneity using affinity chromatography. This involves a tandem `reactive blue A-agarose' and `reactive red-A-agarose' as the final step in the procedure. This procedure results in a yield of 18 milligrams of pure glutamine synthetase per kilogram of starting material. The purity of our enzyme has been demonstrated on both one- and two-dimensional polyacrylamide gels.

Purified glutamine synthetase has a molecular weight of 360,000 daltons and consists of eight 44,000 dalton subunits. The Km is 6.7 millimolar for glutamate, 1.8 millimolar for ATP (synthetase assay), and 37.6 millimolar for glutamine (transferase assay). The isoelectric point is 6.5 and the pH optima are 7.3 in the synthetase assay and 6.4 in the transferase assay. The irreversible, competitive inhibitors methionine sulfoxamine and phosphinothricin have Ki values of 0.1 millimolar and 6.1 micromolar, respectively. Amino acid analysis has been carried out and the results compared with published analyses for other isoforms of glutamine synthetase.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号