首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity.  相似文献   

2.
Op18/stathmin (Op18) is a phosphorylation-regulated microtubule destabilizer that is frequently overexpressed in tumors. The importance of Op18 in malignancy was recently suggested by identification of a somatic Q18-->E mutation of Op18 in an adenocarcinoma. We addressed the functional consequences of aberrant Op18 expression in leukemias by analyzing the cell cycle of K562 cells either depleted of Op18 by expression of interfering hairpin RNA or induced to express wild-type or Q18E substituted Op18. We show here that although Op18 depletion increases microtubule density during interphase, the density of mitotic spindles is essentially unaltered and cells divide normally. This is consistent with phosphorylation-inactivation of Op18 during mitosis. Overexpression of wild-type Op18 results in aneugenic activities, manifest as aberrant mitosis, polyploidization, and chromosome loss. One particularly significant finding was that the aneugenic activity of Op18 was dramatically increased by the Q18-->E mutation. The hyperactivity of mutant Op18 is apparent in its unphosphorylated state, and this mutation also suppresses phosphorylation-inactivation of the microtubule-destabilizing activity of Op18 without any apparent effect on its phosphorylation status. Thus, although Op18 is dispensable for mitosis, the hyperactive Q18-->E mutant, or overexpressed wild-type Op18, exerts aneugenic effects that are likely to contribute to chromosomal instability in tumors.  相似文献   

3.
Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  相似文献   

4.
Oncoprotein 18 (Op18, also termed p19, 19K, metablastin, stathmin, and prosolin) is a recently identified regulator of microtubule (MT) dynamics. Op18 is a target for both cell cycle and cell surface receptor-coupled kinase systems, and phosphorylation of Op18 on specific combinations of sites has been shown to switch off its MT-destabilizing activity. Here we show that induced expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) results in a dramatic increase in cellular MT polymer content concomitant with phosphorylation and partial degradation of Op18. That PKA may regulate the MT system by downregulation of Op18 activity was evaluated by a genetic system allowing conditional co-expression of PKA and a series of kinase target site–deficient mutants of Op18. The results show that phosphorylation of Op18 on two specific sites, Ser-16 and Ser-63, is necessary and sufficient for PKA to switch off Op18 activity in intact cells. The regulatory importance of dual phosphorylation on Ser-16 and Ser-63 of Op18 was reproduced by in vitro assays. These results suggest a simple model where PKA phosphorylation downregulates the MT-destabilizing activity of Op18, which in turn promotes increased tubulin polymerization. Hence, the present study shows that Op18 has the potential to regulate the MT system in response to external signals such as cAMP-linked agonists.  相似文献   

5.
Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr results in phosphorylation of Op18 on Ser-16. In parallel, we also observed partial degradation of Op18 and a rapid increase of total cellular MTs. These results suggest a link between CaMK IV/Gr, Op18, and MT dynamics. To explore such a putative link, we optimized a genetic system that allowed conditional coexpression of a series of CaMK IV/Gr and Op18 derivatives. The result shows that CaMK IV/Gr can suppress the MT-regulating activity of Op18 by phosphorylation on Ser-16. In line with these results, by employing a chemical cross-linking protocol, it was shown that phosphorylation of Ser-16 is involved in weakening of the interactions between Op18 and tubulin. Taken together, these data suggest that the mechanism of CaMK IV/Gr-mediated suppression of Op18 activity involves both partial degradation of Op18 and direct modulation of the MT-destabilizing activity of this protein. These results show that Op18 phosphorylation by CaMK IV/Gr may couple alterations of MT dynamics in response to external signals that involve Ca2+.  相似文献   

6.
Oncoprotein18/stathmin (Op18) is a regulator of microtubule (MT) dynamics that binds tubulin heterodimers and destabilizes MTs by promoting catastrophes (i.e., transitions from growing to shrinking MTs). Here, we have performed a deletion analysis to mechanistically dissect Op18 with respect to (a) modulation of tubulin GTP hydrolysis and exchange, (b) tubulin binding in vitro, and (c) tubulin association and MT-regulating activities in intact cells. The data reveal distinct types of region-specific Op18 modulation of tubulin GTP metabolism, namely inhibition of nucleotide exchange and stimulation or inhibition of GTP hydrolysis. These regulatory activities are mediated via two-site cooperative binding to tubulin by multiple nonessential physically separated regions of Op18. In vitro analysis revealed that NH(2)- and COOH-terminal truncations of Op18 have opposite effects on the rates of tubulin GTP hydrolysis. Transfection of human leukemia cells with these two types of mutants result in similar decrease of MT content, which in both cases appeared independent of a simple tubulin sequestering mechanism. However, the NH(2)- and COOH-terminal-truncated Op18 mutants regulate MTs by distinct mechanisms as evidenced by morphological analysis of microinjected newt lung cells. Hence, mutant analysis shows that Op18 has the potential to regulate tubulin/MTs by more than one specific mechanism.  相似文献   

7.
The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.  相似文献   

8.
Microtubule (MT) dynamics and organization change markedly during interphase-M phase transition of the cell cycle. This mini review focuses first on p220, a ubiquitous MT-associated protein of Xenopus. p220 is phosphorylated by p34cdc2 kinase and MAP kinase in M phase, and concomitantly loses its MT-binding and MT-stabilizing activities. A cDNA encoding p220 was cloned, which identified p220 as a Xenopus homolog of MAP4, and p220 was therefore termed XMAP4. To examine the physiological relevance of XMAP4 phosphorylation during mitosis, Xenopus A6 cells were transfected with cDNA encoding wild-type or various XMAP4 mutants fused with a green fluorescent protein (GFP). Mutations of serine and threonine within potential phosphorylation sites for p34cdc2 kinase to nonphosphorylatable alanine interfered with mitosis-associated reduction in MT-affinity of XMAP4 and their overexpression affected chromosome movement during anaphase A. These results indicated that phosphorylation of XMAP4 by p34cdc2 kinase is responsible for the decrease in its MT-binding and MT-stabilizing activities during mitosis which are important for chromosome movement during anaphase A. The second focus is on a novel monoclonal antibody W8C3, which recognizes alpha-tubulin. W8C3 stained spindle MTs but not interphase MTs of Xenopus A6 cells, although tubulin dimers in M phase and interphase were equally recognized by this antibody. The difference in MT staining pattern may be because the W8C3-recognition site on alpha-tubulin is sterically hidden in interphase MTs but not in spindle MTs.  相似文献   

9.
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a "pseudophosphorylation" derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.  相似文献   

10.
We used immunofluorescent microscopy to characterize microtubule (MT) architecture in wild-type and mutant protoplasts of Aspergillus nidulans at interphase and at mitosis. Because the visualization of MTs by immunofluorescence is technically difficult in intact hyphae of A. nidulans, we developed a method for removing the cell wall under conditions that do not perturb cell physiology, as evidenced by the fact that the resulting protoplasts undergo nuclear division at a normal rate and that cell cycle mutant phenotypes are expressed at restrictive temperature. Interphase cells exhibited an extensive network of cytoplasmic MTs. During mitosis the cytoplasmic MTs mostly disappeared and an intranuclear mitotic spindle appeared. We have previously shown that the benA 33 beta-tubulin mutation causes hyperstabilization of the mitotic spindle, and we have presented additional indirect evidence that suggested that the tubA1 and tubA4 alpha-tubulin mutations destabilize spindle MTs. In this paper, we show that the benA33 mutation increases the stability of cytoplasmic MTs as well as spindle MTs and that the tubA1 and tubA4 mutations destabilize both spindle and cytoplasmic MTs.  相似文献   

11.
C A Dougherty  C R Sage  A Davis  K W Farrell 《Biochemistry》2001,40(51):15725-15732
We introduced a threonine-to-glycine point mutation at position 143 in the "tubulin signature motif" 140Gly-Gly-Gly-Thr-Gly-Ser-Gly146 of Saccharomyces cerevisiae beta-tubulin. In an electron diffraction model of the tubulin dimer, this sequence comes close to the phosphates of a guanine nucleotide bound in the beta-tubulin exchangeable E site. Both the GTP-binding affinity and the microtubule (MT)-dependent GTPase activity of tubulin isolated from haploid tub2-T143G mutant cells were reduced by at least 15-fold, compared to tubulin isolated from control wild-type cells. The growing and shortening dynamics of MTs assembled from alphabeta:Thr143Gly-mutated dimers were also strongly suppressed, compared to control MTs. The in vitro properties of the mutated MTs (slower growing and more stable) are consistent with the effects of the tub2-T143G mutation in haploid cells. The average length of MT spindles in large-budded mutant cells was only 3.7 +/- 0.2 microm, approximately half of the size of MT arrays in large-budded wild-type cells (average length = 7.1 +/- 0.4 microm), suggesting that there is a delay in mitosis in the mutant cells. There was also a higher proportion of large-budded cells with unsegregated nuclei in mutant cultures (30% versus 12% for wild-type cells), again suggesting such a delay. The results show that beta:Thr143 of the tubulin signature motif plays an important role in GTP binding and hydrolysis by the beta-tubulin E site and support the idea that tubulins belong to a family of proteins within the GTPase superfamily that are structurally distinct from the classic GTPases, such as EF-Tu and p21(ras). The data also suggest that MT dynamics are critical for MT function in yeast cells and that spindle MT assembly and disassembly could be coordinated with other cell-cycle events by regulating beta-tubulin GTPase activity.  相似文献   

12.
Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis.  相似文献   

13.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

14.
p53 is associated with p34cdc2 in transformed cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Milner  A Cook    J Mason 《The EMBO journal》1990,9(9):2885-2889
The normal functioning of p53 is thought to involve p53 target proteins. We have previously identified a cellular 35 kd protein associated with p53 and now report evidence identifying this 35 kd protein as p34cdc2, product of the cell cycle control cdc2 gene. The association between p53 and p34cdc2 was detected in SV3T3 and T3T3 cell lines, both expressing the wild-type p53 phenotype, and in 3T3tx cells, expressing 'mutant' p53 phenotype. Binding of the mutant p53 phenotype with p34cdc2 was greatly reduced relative to wild-type. Complexes of p53-p34cdc2 may represent inactivation or activation of either component. The p34cdc2 kinase functions at cell cycle control points and is necessary for entry and passage through mitosis. It also operates in G1 and is involved in the commitment of cells into the proliferative cycle. Since we were unable to detect p53-p34cdc2 complexes in mitotic cells we propose that the interaction between p53 and p34cdc2 may be functional in cell growth control, possibly to promote or to suppress cell proliferation.  相似文献   

15.
Tumor necrosis factor (TNF)-induced cell death in the fibrosarcoma cell line L929 occurs independently of caspase activation and cytochrome c release. However, it is dependent on mitochondria and is characterized by increased production of reactive oxygen intermediates that are essential to the death process. To identify signaling molecules involved in this TNF-induced, reactive oxygen intermediate-dependent cell death pathway, we performed a comparative study by two-dimensional gel electrophoresis of phosphoproteins from a mitochondria-enriched fraction derived from TNF-treated and control cells. TNF induced rapid and persistent phosphorylation of the phosphorylation-responsive regulator of the microtubule (MT) dynamics, oncoprotein 18 (Op18). By using induced overexpression of wild type Op18 and phosphorylation site-deficient mutants S25A/S38A and S16A/S63A in L929 cells, we show that TNF-induced phosphorylation on each of the four Ser residues of Op18 promotes cell death and that Ser(16) and Ser(63) are the primary sites. This hyperphosphorylation of Op18 is known to completely turn off its MT-destabilizing activity. As a result, TNF treatment of L929 cells induced elongated and extremely tangled microtubules. These TNF-induced changes to the MT network were also observed in cells overexpressing wild type Op18 and, to a lesser extent, in cells overexpressing the S25A/S38A mutant. No changes in the MT network were observed upon TNF treatment of cells overexpressing the S16A/S63A mutant, and these cells were desensitized to TNF-induced cell death. These findings indicate that TNF-induced MT stabilization is mediated by hyperphosphorylation of Op18 and that this promotes cell death. The data suggest that Op18 and the MT network play a functional role in transduction of the cell death signal to the mitochondria.  相似文献   

16.
Laulimalide is a natural product that has strong taxoid-like properties but binds to a distinct site on β-tubulin in the microtubule (MT) lattice. At elevated concentrations, it generates MTs that are resistant to depolymerization, and it induces a conformational state indistinguishable from taxoid-treated MTs. In this study, we describe the effect of low-dose laulimalide on various stages of the cell cycle and compare these effects to docetaxel as a representative of taxoid stabilizers. No evidence of MT bundling in interphase was observed with laulimalide, in spite of the fact that MTs are stabilized at low dose. Cells treated with laulimalide enter mitosis but arrest at prometaphase by generating multiple asters that coalesce into supernumerary poles and interfere with the integrity of the metaphase plate. Cells with a preformed bipolar spindle exist under heightened tension under laulimalide treatment, and chromosomes rapidly shear from the plate, even though the bipolar spindle is well-preserved. Docetaxel generates a similar phenotype for HeLa cells entering mitosis, but when treated at metaphase, cells undergo chromosomal fragmentation and demonstrate reduced centromere dynamics, as expected for a taxoid. Our results suggest that laulimalide represents a new class of molecular probe for investigating MT-mediated events, such as kinetochore-MT interactions, which may reflect the location of the ligand binding site within the interprotofilament groove.  相似文献   

17.
Laulimalide is a natural product that has strong taxoid-like properties but binds to a distinct site on β-tubulin in the microtubule (MT) lattice. At elevated concentrations, it generates MTs that are resistant to depolymerization, and it induces a conformational state indistinguishable from taxoid-treated MTs. In this study, we describe the effect of low-dose laulimalide on various stages of the cell cycle and compare these effects to docetaxel as a representative of taxoid stabilizers. No evidence of MT bundling in interphase was observed with laulimalide, in spite of the fact that MTs are stabilized at low dose. Cells treated with laulimalide enter mitosis but arrest at prometaphase by generating multiple asters that coalesce into supernumerary poles and interfere with the integrity of the metaphase plate. Cells with a preformed bipolar spindle exist under heightened tension under laulimalide treatment, and chromosomes rapidly shear from the plate, even though the bipolar spindle is well-preserved. Docetaxel generates a similar phenotype for HeLa cells entering mitosis, but when treated at metaphase, cells undergo chromosomal fragmentation and demonstrate reduced centromere dynamics, as expected for a taxoid. Our results suggest that laulimalide represents a new class of molecular probe for investigating MT-mediated events, such as kinetochore-MT interactions, which may reflect the location of the ligand binding site within the interprotofilament groove.  相似文献   

18.
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18→E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.  相似文献   

19.
Protein kinases regulate a number of critical events in mitosis and meiosis. A study of the evolution of kinases involved in cell cycle control (CCC) might shed light on the evolution of the eukaryotic cell cycle. In particular, applying quantitative phylogenetic methods to key CCC kinases could provide information on the relative timing of gene duplication events. To investigate the evolution of CCC kinases, we constructed phylogenetic trees for the CDC28 family and performed statistical tests of the tree topology. This family includes the cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, as well as other CCC kinases. We found that CDKs and, in particular, the principal cell cycle regulator Cdc28p, branch off the phylogenetic tree at a late stage, after several other kinases involved in either mitosis or meiosis regulation. On the basis of this tree topology, it is proposed that, at early stages of evolution, the eukaryotic cell cycle was not controlled by CDKs and that only a subset of extant kinases, notably the DNA damage checkpoint kinase Chk1p, were in place. During subsequent evolution, a series of duplications of kinase genes occurred, gradually adding more kinases to the CCC system, the CDKs being among the last major additions.  相似文献   

20.
Microtubule-associated proteins (MAPs) bind to and stabilize microtubules (MTs) both in vitro and in vivo and are thought to regulate MT dynamics during the cell cycle. It is known that p220, a major MAP of Xenopus, is phosphorylated by p34(cdc2) kinase as well as MAP kinase in mitotic cells, and that the phosphorylated p220 loses its MT-binding and -stabilizing abilities in vitro. We cloned a full-length cDNA encoding p220, which identified p220 as a Xenopus homologue of MAP4 (XMAP4). To examine the physiological relevance of XMAP4 phosphorylation in vivo, Xenopus A6 cells were transfected with cDNAs encoding wild-type or various XMAP4 mutants fused with a green fluorescent protein. Mutations of serine and threonine residues at p34(cdc2) kinase-specific phosphorylation sites to alanine interfered with mitosis-associated reduction in MT affinity of XMAP4, and their overexpression affected chromosome movement during anaphase A. These findings indicated that phosphorylation of XMAP4 (probably by p34(cdc2) kinase) is responsible for the decrease in its MT-binding and -stabilizing abilities during mitosis, which are important for chromosome movement during anaphase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号