首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

During the RNA World, molecular populations were probably very small and highly susceptible to the force of strong random drift. In conjunction with Muller's Ratchet, this would have imposed difficulties for the preservation of the genetic information and the survival of the populations. Mechanisms that allowed these nascent populations to overcome this problem must have been advantageous.  相似文献   

2.

Background  

The self-fertile hermaphrodite worm C. elegans is an important model organism for biology, yet little is known about the origin and persistence of the self-fertilizing mode of reproduction in this lineage. Recent work has demonstrated an extraordinary degree of selfing combined with a high deleterious mutation rate in contemporary populations. These observations raise the question as to whether the mutation load might rise to such a degree as to eventually threaten the species with extinction. The potential for such a process to occur would inform our understanding of the time since the origin of self-fertilization in C. elegans history.  相似文献   

3.

Background  

The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available.  相似文献   

4.

Background  

In this report we re-examine some recent experiments with digital organisms to test some predictions of quasispecies theory. These experiments revealed that under high mutation rates populations of less fit organisms previously adapted to such high mutation rates were able to outcompete organisms with higher average fitness but adapted to low mutation rates.  相似文献   

5.

Background  

The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical estimates of the rate and effects of mutation in the protists.  相似文献   

6.

Background  

Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known.  相似文献   

7.

Background  

Marine pelagic fishes exhibit rather complex patterns of genetic differentiation, which are the result of both historical processes and present day gene flow. Comparative multi-locus analyses based on both nuclear and mitochondrial genetic markers are probably the most efficient and informative approach to discerning the relative role of historical events and life-history traits in shaping genetic heterogeneity. The European sardine (Sardina pilchardus) is a small pelagic fish with a relatively high migratory capability that is expected to show low levels of genetic differentiation among populations. Previous genetic studies based on meristic and mitochondrial control region haplotype frequency data supported the existence of two sardine subspecies (S. p. pilchardus and S. p. sardina).  相似文献   

8.

Background  

A selective sweep containing the insulin-like growth factor 1 (IGF1) gene is associated with size variation in domestic dogs. Intron 2 of IGF1 contains a SINE element and single nucleotide polymorphism (SNP) found in all small dog breeds that is almost entirely absent from large breeds. In this study, we surveyed a large sample of grey wolf populations to better understand the ancestral pattern of variation at IGF1 with a particular focus on the distribution of the small dog haplotype and its relationship to the origin of the dog.  相似文献   

9.

Background  

Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations.  相似文献   

10.
Asexual populations irreversibly accumulate mildly deleterious mutations through the occasional stochastic loss of their least-loaded line, a process known as “Muller's Ratchet”. This paper explores the dynamics of this process, and the role of recombination in halting the Ratchet. Simulation studies show that an optimal class comprising no individuals is lost in about 10no generations, implying that adaptedness may deteriorate rather rapidly in geological time. Asexual organisms will persist only if they are very numerous, or if they have very small genomes, or if there is extensive negative interaction among nonallelic mutations. Otherwise, long-term persistence requires that unloaded genomes be continually generated by recombination. An approximate expression for the rate of recombination needed to halt the Ratchet is developed, and shows that substantial recombination is necessary in populations of fewer than about 1010 individuals. A further complication is introduced by mutations in sequences which specify proofreading enzymes. Since these will reduce the fidelity of their own replication, a process of positive feedback leading to an ever-accelerating loss of function is conceivable.  相似文献   

11.

Background  

Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox 2-3 and rbc L-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing.  相似文献   

12.

Background  

Brachypodium distachyon constitutes an excellent model species for grasses. It is a small, easily propagated, temperate grass with a rapid life cycle and a small genome. It is a self-fertile plant that can be transformed with high efficiency using Agrobacteria and callus derived from immature embryos. In addition, considerable genetic and genomic resources are becoming available for this species in the form of mapping populations, large expressed sequence tag collections, T-DNA insertion lines and, in the near future, the complete genome sequence. The development of Brachypodium as a model species is of particular value in the areas of cell wall and biomass research, where differences between dicots and grasses are greatest. Here we explore the effect of mild conditions of pretreatment and hydrolysis in Brachypodium stem segments as a contribution for the establishment of sensitive screening of the saccharification properties in different genetic materials.  相似文献   

13.

Background  

It is commonly thought that large asexual populations evolve more rapidly than smaller ones, due to their increased rate of beneficial mutations. Less clear is how population size influences the level of fitness an asexual population can attain. Here, we simulate the evolution of bacteria in repeated serial passage experiments to explore how features such as fitness landscape ruggedness, the size of the mutational target under selection, and the mutation supply rate, interact to affect the evolution of microbial populations of different sizes.  相似文献   

14.

Background  

Inbreeding and loss of genetic diversity are expected to increase the extinction risk of small populations, but detailed tests in natural populations are scarce. We combine long-term population and fitness data with those from two types of molecular markers to examine the role of genetic effects in a declining metapopulation of southern dunlins Calidris alpina schinzii, an endangered shorebird.  相似文献   

15.

Background  

parkin mutations are a common cause of parkinsonism. Possessing two parkin mutations leads to early-onset parkinsonism, while having one mutation may predispose to late-onset disease. This dosage pattern suggests that some parkin families should exhibit intergenerational variation in age at onset resembling anticipation. A subset of familial PD exhibits anticipation, the cause of which is unknown. The aim of this study was to determine if anticipation was due to parkin mutation dosage.  相似文献   

16.

Background  

Ultra-high throughput sequencing technologies provide opportunities both for discovery of novel molecular species and for detailed comparisons of gene expression patterns. Small RNA populations are particularly well suited to this analysis, as many different small RNAs can be completely sequenced in a single instrument run.  相似文献   

17.

Background  

The organization of the different tissues of an animal requires mechanisms that regulate cell-cell adhesion to promote and maintain the physical separation of adjacent cell populations. In the Drosophila imaginal wing disc the iroquois homeobox genes are expressed in the notum anlage and contribute to the specification of notum identity. These genes are not expressed in the adjacent wing hinge territory. These territories are separated by an approximately straight boundary that in the mature disc is associated with an epithelial fold. The mechanism by which these two cell populations are kept separate is unclear.  相似文献   

18.

Background  

The Notostraca is a small but ancient crustacean order with a contrasting combination of a conservative morphology and a wide range of reproductive modes. The tadpole shrimp Triops cancriformis, includes bisexual – the putatively ancestral state -, androdioecious and hermaphrodite populations. As hermaphroditism and androdioecy confer a colonisation advantage, we expect the postglacial colonisation of northern Europe to have been effected by lineages with such reproductive modes. Therefore, N European populations should be composed of closely related lineages reflecting a recent range expansion. In contrast, glacial refugia in the south should contain bisexual populations with high haplotype diversity and more population structuring. To test these hypotheses, we analysed the geographic distribution of reproductive modes based on new and published sex ratio data. In addition, we investigated the European phylogeography of T. cancriformis by sequencing over a 1000 bp of mitochondrial DNA (mtDNA) in individuals from a large sample of populations of the three recognised subspecies.  相似文献   

19.

Aim

Range shifts are expected to occur when populations at one range margin perform better than those at the other margin, yet no global trend in population performances at range margins has been demonstrated empirically across a wide range of taxa and biomes. Here we test the prediction that, if impacts of ongoing climate change on performance in marginal populations are widespread, then populations from the high-latitude margin (HLM) should perform as well as or better than central populations, whereas low-latitude margin (LLM) populations should perform worse.

Location

Global.

Time period

1995–2019.

Major taxa studied

Plants and animals.

Methods

To test our prediction, we used a meta-analysis to quantify empirical support for asymmetry in the performance of high- and low-latitude margin populations compared to central populations. Performance estimates (survival, reproduction, or lifetime fitness) for populations occurring in their natural environment were derived from 51 papers involving 113 margin-centre comparisons from 54 species and 705 populations from the Americas, Europe, Africa and Australia. We then related these performance differences to climatic differences among populations. We also tested whether patterns are consistent across taxonomic kingdoms (plants vs animals) and across realms (marine vs terrestrial).

Results

Populations at margins performed significantly worse than central populations, and this trend was primarily driven by the low-latitude margin. Although the difference was of small magnitude, it was largely consistent across biological kingdoms and realms. Differences in performance were weakly (p = .08) related to the difference in average temperatures between central and marginal populations.

Main conclusions

The observed asymmetry in performance in marginal populations is consistent with predictions about the effects of global climate change, though further research is needed to confirm the effect of climate. It indicates that changes in demographic rates in marginal populations can serve as early-warning signals of impending range shifts.  相似文献   

20.

Background  

Riboswitches are mRNA elements that change conformation when bound to small molecules. They are known to be key regulators of biosynthetic pathways in both prokaryotes and eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号