首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to elucidate the difference between pressure resistance in trout (Onchorhyncus mykiss) and eel (Anguilla anguilla), oxygen consumption of red muscle permeabilised cells and mitochondria were measured at 101 ATA hydrostatic pressure per se. Such an experiment involved the setting up of a special system allowing measurements under high pressure. The results show that hydrostatic pressure strongly alters the oxidative phosphorylation in trout but not in eel, which exhibits mitochondrial pressure resistance. It is hypothesised that the eel has a supranormal mitochondria functioning at atmospheric pressure in order to cope with the high pressure environment encountered during its migration.  相似文献   

2.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

3.
Metabolic responses to low temperature in fish muscle   总被引:2,自引:0,他引:2  
For most fish, body temperature is very close to that of the habitat. The diversity of thermal habitats exploited by fish as well as their capacity to adapt to thermal change makes them excellent organisms in which to examine the evolutionary and phenotypic responses to temperature. An extensive literature links cold temperatures with enhanced oxidative capacities in fish tissues, particularly skeletal muscle. Closer examination of inter-species comparisons (i.e. the evolutionary perspective) indicates that the proportion of muscle fibres occupied by mitochondria increases at low temperatures, most clearly in moderately active demersal species. Isolated muscle mitochondria show no compensation of protein-specific rates of substrate oxidation during evolutionary adaptation to cold temperatures. During phenotypic cold acclimation, mitochondrial volume density increases in oxidative muscle of some species (striped bass Morone saxatilis, crucian carp Carassius carassius), but remains stable in others (rainbow trout Oncorhynchus mykiss). A role for the mitochondrial reticulum in distributing oxygen through the complex architecture of skeletal muscle fibres may explain mitochondrial proliferation. In rainbow trout, compensatory increases in the protein-specific rates of mitochondrial substrate oxidation maintain constant capacities except at winter extremes. Changes in mitochondrial properties (membrane phospholipids, enzymatic complement and cristae densities) can enhance the oxidative capacity of muscle in the absence of changes in mitochondrial volume density. Changes in the unsaturation of membrane phospholipids are a direct response to temperature and occur in isolated cells. This fundamental response maintains the dynamic phase behaviour of the membrane and adjusts the rates of membrane processes. However, these adjustments may have deleterious consequences. For fish living at low temperatures, the increased polyunsaturation of mitochondrial membranes should raise rates of mitochondrial respiration which would in turn enhance the formation of reactive oxygen species (ROS), increase proton leak and favour peroxidation of these membranes. Minimisation of mitochondrial oxidative capacities in organisms living at low temperatures would reduce such damage.  相似文献   

4.
This review will focus on the effects of hydrostatic pressure on the oxidative metabolism and on the energy production of the eel Anguilla anguilla, in comparison with the results of investigations conducted on the other powerful euryhaline species, the chinese crab Eriocheir sinensis. Anguilla and Eriocheir were chosen as being both aquatic ectotherms with comparable life modes, the eel being however “preadapted” to high pressure while the crab normally never encounters high levels of pressure during its life cycle. Comparison between both species should lead to better knowledge of the biological effects of hydrostatic pressure per se.Experimental evidence suggests that the oxygen consumption ṀO2 decrease observed in both animal species during exposure to 101 ATA hydrostatic pressure and which follows a transient increase, likely results from a decrease in O2 use at the cell level. That idea of an alteration of aerobic metabolism during the first hours under pressure is substantiated by a set of experiments on the eel. However, results indicate that, after some days under pressure, the shallow water fish is quite able to acclimate perfectly to high pressure. The hypothesis that pressure induces a state resembling histotoxic hypoxia during the first hours of exposure is put forward and discussed.The second part of the review focuses on some results showing that osmoregulation is also concerned with hydrostatic pressure. Results obtained on the freshwater eel clearly establish the occurrence of a Na+ balance impairment at the tissue level induced by a long-term (30 days) exposure to pressure. It is interesting to point out that this impairment occurs at the same time when a new state of energetic metabolism results from adjustments of intertissue coupling of anaerobic and aerobic metabolisms induced by pressure. It is shown that the physiological processes involved in the control of the hydromineral balance in the chinese crab (which never experiences high-pressure exposure in the course of its life cycle) are outstandingly resistant to pressure by comparison with other crustaceans like the crayfish and the shore crab. Disturbances in hydromineral balance and energetic metabolism in the chinese crab are rapidly resorbed and adjusted to a new state of activity.  相似文献   

5.
Oral manifestations of Down syndrome include high susceptibility to gingival inflammation with early onset and rapidly progressive periodontitis. The influence of reactive oxygen species (ROS) on periodontitis of Down syndrome is unclear. The aim of this study was to characterize ROS formation in Down syndrome-gingival fibroblasts (DS-GF) using electron spin resonance (ESR) spin trapping with 5,5-dimetyl-1-pyrolline-N-oxide (DMPO), and to determine whether ROS generation plays a role in the pathogenesis of periodontitis in Down syndrome patients. We observed formation of the DMPO-OH spin adduct, indicating HO* generation from cultured DS-GF and non-DS-GF. The increased HO* generation in cultured DS-GF was strongly decreased in the presence of the H2O2 scavenger, catalase, or the iron chelator, desferal. This may due to the enzymatic ability of over-expressed CuZn-superoxide dismutase in Down syndrome to catalyze the formation of H2O2 from O2*-, thereby increasing the availability of substrate H2O2 for the iron-dependent generation of HO* via the Fenton reaction, suggesting that HO* generated from DS-GF may be involved in progressive periodontitis of Down syndrome.  相似文献   

6.
Mitochondrion is the main production site for reactive oxygen species (ROS). In endotherms, the existence of a positive relationship between ROS production and metabolic rate is acknowledged. But, little is known about ectotherms, especially fish, with a metabolic rate dependent on the environmental temperature. The maximal oxygen consumption and the production of highly reactive hydroxyl radicals by permeabilized red muscles of yellow and silver eels and trouts were measured concomitantly and compared to those of rats chosen for their comparable body mass, but different metabolic rate. The positive correlation found in fish between the metabolic rate and the ROS production showed a shift with respect to mammals.  相似文献   

7.
Red muscle function during steady swimming in brook trout was studied through both in vivo swimming and in vitro muscle mechanics experiments. In the swimming experiments, red muscle activity was characterized through the use of electromyography and sonomicrometry, allowing the determination of several parameters such as tailbeat frequency, EMG burst duration, muscle length change patterns and relative phase of EMG activity and length change. Brook trout do show some shifts in these variables along their length during steady swimming, but the magnitude of these shifts is relatively small. In the muscle mechanics experiments, the in vivo muscle activity data were used to evaluate patterns of power production by red muscle during swimming. Unlike many fish species, the red muscle along the length of brook trout shows little change in isometric kinetic variables such as relaxation rate and twitch time. Furthermore, there is no rostral-caudal shift in red muscle mass-specific power output during steady swimming. This last result contrasts sharply with rainbow trout and with a variety of other fish species that power steady swimming primarily with the posterior red myotome.  相似文献   

8.
Reductions in cellular oxygen consumption (Vo2) and reactive oxygen species (ROS) production have been proposed as mechanisms underlying the anti-aging effects of calorie restriction (CR). Mitochondria are a cell's greatest "sink" for oxygen and also its primary source of ROS. The mitochondrial proton leak pathway is responsible for 20-30% of Vo2 in resting cells. We hypothesized that CR leads to decreased proton leak with consequential decreases in Vo2, ROS production, and cellular damage. Here, we report the effects of short-term (2-wk, 2-mo) and medium-term (6-mo) CR (40%) on rat muscle mitochondrial proton leak, ROS production, and whole animal Vo2. Whole body Vo2 decreased with CR at all time points, whereas mass-adjusted Vo2 was normal until the 6-mo time point, when it was 40% lower in CR compared with control rats. At all time points, maximal leak-dependent Vo2 was lower in CR rats compared with controls. Proton leak kinetics indicated that mechanisms of adaptation to CR were different between short- and medium-term treatments, with the former leading to decreases in protonmotive force (Deltap) and state 4 Vo2 and the latter to increases in Deltap and decreases in state 4 Vo2. Results from metabolic control analyses of oxidative phosphorylation are consistent with the idea that short- and medium-term responses are distinct. Mitochondrial H2O2 production was lower in all three CR groups compared with controls. Overall, this study details the rapid effects of short- and medium-term CR on proton leak, ROS production, and metabolic control of oxidative phosphorylation. Results indicate that a reduction in mitochondrial Vo2 and ROS production may be a mechanism for the actions of CR.  相似文献   

9.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

10.
Compared with fish of a slow-growing strain, fast-growing rainbow trout exhibited significantly smaller white fibre diameters, throughout development from hatching to 24 cm body length, although possessing similar total number of fibres. In contrast, in red muscle, no differences were observed in fibre diameter between the two strains, but the fast growing fish showed a significantly higher number of red fibres. The differences in growth rate between the two strains were related to the mean white fibre diameter and were found to be matched by proportional adjustments in recruitment of new fibres to the growing muscle. Thus, the largest and fastestgrowing strain showed evidence of sustained higher recruitment of muscle fibres that endowed this strain with the potential to maintain rapid somatic growth for longer and accomplish greater muscle growth.  相似文献   

11.
The aim of this study was to investigate whether the heme oxygenase (HO) pathway could modulate proliferation of airway smooth muscle (ASM) and the mechanism(s) involved in this phenomenon. In cultured human ASM cells, 10% fetal calf serum or 50 ng/ml platelet-derived growth factor AB induced cell proliferation, extracellular and intracellular reactive oxygen species (ROS) production and ERK1/2 phosphorylation. Pharmacological HO-1 induction (by 10 microm hemin or by 20 microm cobalt-protoporphyrin) and HO inhibition (by 25 microm tin-protoporphyrin or by an antisense oligonucleotide), respectively, reduced and enhanced significantly both cell proliferation and ROS production. Neither the carbon monoxide scavenger myoglobin (5-20 microm) nor the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one could reverse ASM proliferation induced by tin-protoporphyrin, making a role of the CO-cGMP pathway in HO-modulated proliferation unlikely. By contrast, bilirubin (1 microm) and the antioxidant N-acetyl-cysteine (1 mm) significantly reduced mitogen-induced cell proliferation, ROS production, and ERK1/2 phosphorylation. Furthermore, both bilirubin and N-acetyl-cysteine and the ERK1/2 inhibitor PD98059 significantly reversed the effects of HO inhibition on ASM proliferation. These results could be relevant to ASM alterations observed in asthma because activation of the HO pathway prevented the increase in bronchial smooth muscle area induced by repeated ovalbumin challenge in immunized guinea pigs, whereas inhibition of HO had the opposite effect. In conclusion, this study provides evidence for an antiproliferative effect of the HO pathway in ASM in vitro and in vivo through a bilirubin-mediated redox modulation of phosphorylation of ERK1/2.  相似文献   

12.
The involvement of reactive oxygen species (ROS) in cardiac ischemia-reperfusion injuries is well-established, but the deleterious effects of hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO*) or superoxide anion (O(2)*(-) ) on mitochondrial function are poorly understood. Here, we report that incubation of rat heart mitochondria with each of these three species resulted in a decline of the ADP-stimulated respiratory rate but not substrate-dependent respiration. These three species reduced oxygen consumption induced by an uncoupler without alteration of the respiratory chain complexes, but did not modify mitochondrial membrane permeability. HO* slightly decreased F1F0-ATPase activity and HO* and O(2)*(-) partially inhibited the activity of adenine nucleotide translocase; H(2)O(2) failed to alter these targets. They inhibited NADH production by acting specifically on aconitase for O(2)*(-) and alpha-ketoglutarate dehydrogenase for H(2)O(2) and HO*. Our results show that O(2)*(-), H(2)O(2) and HO* act on different mitochondrial targets to alter ATP synthesis, mostly through inhibition of NADH production.  相似文献   

13.
Prompted by the reported lack of solvation effects on the oxygen affinity of fish (trout I) hemoglobin that questioned allosteric water binding in human hemoglobin A (Bellelli, A., Brancaccio, A., and Brunori, M. (1993) J. Biol. Chem. 268, 4742-4744), we have investigated solvation effects in fish and human hemoglobins by means of the osmotic stress method and allosteric analysis. In contrast to the earlier report, we demonstrate that water potential does affect oxygen affinity of trout hemoglobin I in the presence of inert solutes like betaine. Moreover, we show that upon oxygenation electrophoretically anodic hemoglobin from trout and eel bind a similar number of water molecules as does human hemoglobin A, whereas the cathodic hemoglobins of trout and eel bind smaller, but mutually similar, numbers of water molecules. Addition of cofactors strongly increases the number of water molecules bound to eel hemoglobin A (as in human hemoglobin) but only weakly affects water binding to eel hemoglobin C.  相似文献   

14.
15.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

16.
As the spawning migration of the eel is supposed to correspond to a long swimming activity at depth, patterns of slow red muscle contraction have been investigated in European silver eel (Anguilla anguilla L.) exposed for 3 weeks to 10.1 MPa hydrostatic pressure. The results show that pressure-acclimated eels (male and female) show a three-fold decrease in maximum isometric stress of twitch and tetanic contractions while time to peak force, time from peak force to 90% relaxation and ratio of twitch tension to tetanic tension remain unchanged. The observed modifications in slow red muscle mechanical properties do not impede the spawning migration of the eel and are possibly partially compensated by an improvement in the efficiency of oxidative phosphorylation. Effects of changes in membrane fluidity are also discussed.  相似文献   

17.
Rainbow trout (Oncorhynchus mykiss) and brook trout (or charr, Salvelinus fontinalis) display different rostral-caudal patterns of power production by the red or aerobic muscle during steady swimming. The anterior muscle of rainbow trout produces much less power for swimming than the posterior, while in brook trout there is no variation in power output. To determine if red muscle recruitment is associated with anterior-posterior patterns of power production, electromyography (EMG) was used to record red muscle activity at three body positions across a range of swimming speeds in fish of each species. The initial recruitment of the anterior red muscle in swimming rainbow trout was predicted to lag behind, i.e. occur at higher speeds, that of the posterior due to the variation in power production, but no variation in recruitment was expected for brook trout. Burst of red muscle EMG activity occurring with each tailbeat was analyzed for frequency (tailbeat frequency), duty cycle (DC) (duration of burst relative to the period of the tailbeat) and burst intensity (BI) (magnitude of the measured EMG activity). Brook trout swam with higher tailbeat frequencies and longer values of DC than rainbow trout. Both species showed a pattern of longitudinal variation in DC, with longer DC values in the anterior red muscle. BI also differed significantly along the length of rainbow trout but not brook trout. In the former, BI of anterior muscle was significantly less than the posterior at lower steady swimming speeds. The EMG data suggest that power production and muscle recruitment are related. In rainbow trout, where there is longitudinal variation in muscle power output, there are also significant rostral-caudal differences in red muscle recruitment.  相似文献   

18.
We have recently cloned a glucose transporter from brown trout muscle (btGLUT) with high sequence homology to mammalian GLUT4 that is predominantly expressed in red and white skeletal muscle, the two major sites of glucose uptake in trout. To study the physiological regulation of this putative fish GLUT4, we have investigated the expression of btGLUT in red and white skeletal muscle of trout in which blood insulin levels have been altered experimentally. The expression of btGLUT in red muscle increased significantly when insulin plasma levels were elevated by either insulin or arginine treatment and decreased significantly when insulin plasma levels were reduced either by fasting or by feeding a low-protein, high-carbohydrate diet. In contrast, the expression of btGLUT in white muscle was not affected by changes in the plasma levels of insulin. These results strongly suggest that insulin could be regulating the expression of btGLUT in trout red muscle in vivo and set the ground to test the hypothesis that btGLUT may be considered a GLUT4 homolog in fish.  相似文献   

19.
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.  相似文献   

20.
Groups of 6-7 cm length rainbow trout, Salmo gairdneri Richardson, were simultaneously trained at four water velocities (0, 1·4, 2·2 and 3·5 Ls-1) for a period of 46 days. Oxygen consumption and swimming ability (fatigue time) were then measured. Only training at 3·5 Ls-1 increased the swimming ability of the fish. A study of the relative proportion of the white and red muscles indicated that the white muscle was increasing its mass at velocities in excess of 2·2 Ls-1. The oxygen consumption rate of the trained fish was lower than that of the untrained fish when considered over the whole velocity range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号