首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite documented studies, the exact role of stress on diabetes is still unclear. The present study investigates the effect of chronic psychological stress on insulin release from isolated rat pancreatic islets. Male Wistar rats were divided into two groups of control and stressed (n=8/group). The animals of the stressed group were exposed to restraint stressors (1 h twice daily) for 15 or 30 consecutive days. At the beginning and end of the experimental periods, the animals were weighed and blood samples taken to determine the fasting plasma levels of glucose, insulin and corticosterone. On the following day the pancreatic islets of 5/group of the above animals were isolated and the static release of insulin in the presence of different glucose concentrations (2.8, 5.6, 8.3, 16.7 mM) was assessed. The results showed that in the stressed group, fasting plasma glucose levels were increased significantly on the 15th day as compared to the control group. However there was no significant increase on the 30th day. Fasting plasma insulin was significantly decreased on the 15th and 30th days of the experiment in the stressed group. Stressed rats showed significantly higher fasting plasma corticosterone levels, only on the 15th day, as compared to the control rats. In response to increasing concentrations of glucose, insulin release from islets of the stressed group was increased significantly on the 30th day of the experiment as compared to the control group. We conclude that chronic psychological stress could increase responsiveness of pancreatic beta cells to glucose, in vitro, and thus, low insulin levels of the stressed animals, in vivo, may be due to reason(s) other than the reduction of insulin releasing capacity of pancreatic beta cells.  相似文献   

3.
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6−/− mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6−/− mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6−/− islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.  相似文献   

4.
An appropriate regulation of the insulin production and secretion in pancreatic β-cells is necessary for the control of blood glucose homeostasis. The pancreatic duodenal homeobox factor-1 (Pdx-1) is among the various factors and signals which are implicated in the regulation of the insulin synthesis and secretion in the pancreatic β-cells. Recently, we identified Pdx-1 as a substrate for protein kinase CK2. Since CK2 is implicated in the regulation of many different cellular signaling pathways we now asked whether it might also be involved in the regulation of the insulin regulation in β-cells. Here, we show that insulin treatment of β-cells resulted in an elevated CK2 kinase activity. On the other hand down-regulation of CK2 activity by quinalizarin led to an elevated level of insulin. These results demonstrate that CK2 is implicated in the insulin regulation on pancreatic β-cells.  相似文献   

5.
Metapyrone and eicosatetraynoic acid but not indomethacin are effective inhibitors of the secretory response of isolated rat pancreatic islets to arginine and glucose. Epoxyeicosatrienoic acids, products of the cytochrome P-450-NADPH dependent arachidonic acid epoxygenase activity, are potent and selective mediators for the in vitro release of either insulin or glucagon from preparations of isolated rat pancreatic islets.  相似文献   

6.
Ca2+-Induced insulin release from electropermeabilised islets is inhibited by the transglutaminase inhibitors monodansylcadaverine, glycine methylester, methylamine and cystamine but not by the control compounds dimethyl monodansylcadaverine and sarcosine methylester which lack the primary amine group. Neither monodansylcadaverine nor glycine methylester inhibited insulin secretion induced by either cAMP or the phorbol ester PMA at basal levels (10 nM) of Ca2+. These data provide further evidence for the involvement of transglutaminase in Ca2+ induced insulin secretion, they also suggest that insulin secretion induced by either cAMP or PMA may act in part by a mechanism independent of that induced by Ca2+.  相似文献   

7.
Summary In several animal species, galanin occurs in pancreatic nerves and inhibits insulin secretion. However, the presence and action of galanin in the human pancreas have not been established. Therefore, we examined the presence and nature of human pancreatic galanin-like immunoreactive material (GLIR) and the effects of galanin on glucose-stimulated insulin secretion from isolated human islets. Immunofluorescent staining of human pancreas revealed GLIR in fine varicose fibers in both islets and exocrine parenchyma. Furthermore, acid extracts of pancreas (n=3) and isolated islets (n=3) contained 0.17±0.06 and 0.23±0.11 pmol GLIR/mg protein. Human pancreatic GLIR coeluted with synthetic porcine galanin from Sephadex G-50. Moreover, synthetic porcine galanin inhibited glucose-stimulated insulin secretion from collagenase-isolated human islets at dose rates >10-8 M. Thus, (1) human pancreas is innervated by galanin-containing nerves, (2) human pancreatic GLIR is of similar size as synthetic porcine galanin, and (3) porcine galanin inhibits glucose-stimulated insulin secretion from human islets. Therefore, galanin could be an important local regulator of insulin secretion in man.  相似文献   

8.
In order to further evaluate the importance of B-cell metabolism for the stimulation of insulin release, respiration and insulin release were studied in mouse pancreatic islets. Leucine and 2-ketoisocaproate stimulated insulin release during an initial 1-h period, whereas there was no stimulation during two subsequent 1-h periods. This effect was in contrast to that of 16.7 mM glucose, which was a potent stimulator through all the 3 h. Furthermore, the presence of glucose (5.6 mM) or glutamine together with either leucine or 2-ketoisocaproate enhanced the insulin release and prolonged the stimulation. When the kinetics of islet respiration were studied both leucine and 2-ketoisocaproate exerted an initial stimulation on the O2 uptake which, however, was short-lived (less than 30 min). The presence of 5.6 mM glucose strongly delayed the respiratory retardation seen after the initial stimulation. Similarly, glutamine enhanced the leucine- and 2-ketoisocaproate-stimulated respiratory rates and prevented the respiratory retardation otherwise observed. Leucine (20 mM) and 2-ketoisocaproate (10 and 20 mM) stimulated the oxidation of glucose (5.6 mM). It is concluded that there is a strong correlation between respiratory stimulation and the enhancement of insulin release and that leucine and 2-ketoisocaproate depend on the presence of endogenous fuels for their ability to stimulate islet functions in vitro.  相似文献   

9.
Insulin release in response to dextran-linked p-chloromercuribenzoic acid was studied in microdissected pancreatic islets of non-inbred ob/ob-mice. No contamination of the dextran-linked mercurial with free chloromercuribenzoic acid was detected before or after the incubation with islets. In comparison with free mercurial, of the same thiol-blocking activity, the dextran-linked compound had a weak insulin-releasing action with a different dose vs. response relationship. The dextran-linked mercurial had no demonstrable effect on the islet content of cyclic AMP. The results support the hypothesis that free organic mercurials mainly stimulate insulin release by blocking thiol groups that are embedded within the β-cell plasma membranes beneath their surfaces.  相似文献   

10.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

11.
The lead optimization studies of a series of GPR119 agonists incorporating a nortropanol scaffold are described. Extensive structure-activity relationship (SAR) studies of the lead compound 20f led to the identification of compound 36j as a potent, single digit nanomolar GPR119 agonist with high agonist activity. Compound 36j was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test and increased plasma insulin levels in a rat hyperglycemic model. It showed good to excellent pharmacokinetic properties in rats and monkeys and no untoward activities in counter-screen assays. Compound 36j demonstrated an attractive in vitro and in vivo profile for further development.  相似文献   

12.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   

13.
Several neural, hormonal and biochemical inputs actively participate in the balance of insulin secretion induced by blood glucose fluctuations. The exact role of insulin as an autocrine and paracrine participant in the control of its own secretion remains to be determined, mostly due to insufficient knowledge about the molecular phenomena that govern insulin signaling in pancreatic islets. In the present experiments we demonstrate that higher insulin receptor and insulin receptor substrates-1 and -2 (IRS1 and IRS2) concentrations are predominantly encountered in cells of the periphery of rat pancreatic islets, as compared to centrally located cells, and that partial blockade of IRS1 protein expression by antisense oligonucleotide treatment leads to improved insulin secretion induced by glucose overload, which is accompanied by lower steady-state glucagon secretion and blunted glucose-induced glucagon fall. These data reinforce the inhibitory role of insulin upon its own secretion in isolated, undisrupted pancreatic islets.  相似文献   

14.
Many lines of evidence indicate that vanadium inorganic salts possess insulin-mimetic and insulinotropic properties. However, they are poorly absorbed, so high oral doses are required to achieve effective plasma concentrations with possible undesirable toxic side-effects ensuing. Various organically-chelated vanadium compounds have been synthesized that are more potent than inorganic vanadium salts in their insulin-like effects due to their greater bioavailability. Unfortunately, little is known about the possible insulin secretagogue action of organic vanadyl coordination compounds. Hence, we investigated the effect of [VO(metformin)2]H2O, [VO(salicylidene-ethylenedimmine)2] and [VO(pyrrolidine-N-dithiocarbamate)2](VODTC) on insulin release from isolated rat pancreatic islets, and compared it to that of vanadyl sulfate (VOSO4). Of the three coordination compounds, only VODTC was found to exert insulin secretagogue action. VODTC, within concentrations ranging from 0.1 to 1.0 mM, enhanced both basal and glucose (11 mM)-stimulated insulin release. The effect involves calcium channels, since it was not appreciable in Ca2+-free medium. The stimulating action of VODTC required the presence of the whole metal-chelator complex inasmuch as the chelator DTC alone was ineffective. VOSO4 was unable to bring about any significant rise in insulin release from isolated islets. Taken together, our findings indicate that VODTC may be considered a potential elective pharmaceutical tool in the therapy of diabetes, especially of type 2, through its concomitant stimulatory effect on insulin secretion and insulin-mimetic action.  相似文献   

15.
16.
The glucose-induced insulin secretion is fine-tuned by numerous factors. To systematically identify insulinotropic factors, we optimized a primary beta-cell-based functional assay to monitor intracellular Ca2+ flux ([Ca2+]i). By this assay system, we successfully identified several insulinotropic peptides including cholecystokinin, gastrin releasing peptide, vasopressin, and oxytocin from tissue extracts. Screening of an assortment of chemical compounds, we determined three novel insulin secretagogues: N-arachidonylglycine (NAGly), 3beta-(2-diethylamino-ethoxy) androstenone hydrochloride (U18666A), and 4-androstene-3,17-dione. The NAGly increased [Ca2+]i through stimulation of the voltage-dependent Ca2+ channels and it was dependent on extracellular glucose level. On the other hand, U18666A and 4-androstene-3,17-dione increased [Ca2+]i in the presence of K ATP channel opener diazoxide while it was inhibited by the presence of Ca2+ channel blocker nitrendipine, suggesting that their effects are independent of K ATP channel. These unique features will be useful for further development of insulinotropic factors and drugs for treating type 2 diabetes.  相似文献   

17.
The role of protein phosphatases in the regulation of insulin release from rat pancreatic islets was studied with protein phosphatase inhibitors, okadaic acid and calyculin A. Okadaic acid inhibited glucose- and glyceraldehyde-induced insulin release dose-dependently and also inhibited the potentiation of glucose-induced release either by adding forskolin, an activator of adenylate cyclase or by increasing K+ concentration to 25 mM. At a non-stimulatory concentration of 3 mM glucose, a high concentration (2 microM) of okadaic acid inhibited insulin release induced by high K+ or 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, but a low concentration (1 microM) of okadaic acid did not significantly inhibit TPA-induced insulin release. Calyculin A also inhibited glucose-induced insulin release, and the effect was greater than that of okadaic acid. The data suggest that protein phosphatases may play an important role in the regulation of insulin release.  相似文献   

18.
Individual islets were isolated from rat pancreas to study the effects of tryptophan and its metabolites on leucine-stimulated release of insulin. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol were inhibitors at concentrations below 10 mM whereas tryptophan, kynurenine, kynurenic acid, xanthurenic acid, and anthranilic acid were ineffective inhibitors at concentrations up to 10 mM. A structure-activity analysis of these metabolites demonstrated that vicinal aromatic hydroxy and amino groups with their concomitant electron donating properties are required for inhibition of insulin release. Inhibition of islet insulin release by the three kynurenine metabolites may be involved in the depressed insulin levels found in vitamin B6-deficient rats by other workers.  相似文献   

19.
Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets   总被引:1,自引:0,他引:1  
Pyruvate dehydrogenase (PDH) converts pyruvate to acetyl-CoA, links glycolysis to the Krebs cycle, and plays an important role in glucose metabolism and insulin secretion in pancreatic beta cells. In beta cells from obese and Type 2 diabetic animals, PDH activity is significantly reduced. PDH is negatively regulated by multiple pyruvate dehydrogenase kinase (PDK) isotypes (PDK subtypes 1-4). However, we do not know whether fatty acids or high glucose modulate PDKs in islets. To test this we determined PDH and PDK activities and PDK gene and protein expression in C57BL/6 mouse islets. Both high palmitate and high glucose reduced active PDH activity and increased PDK activity. The gene and protein for PDK3 were not expressed in islets. Palmitate up-regulated mRNA expression of PDK1 (2.9-fold), PDK2 (1.9-fold), and PDK4 (3.1-fold). High glucose increased PDK1 (1.8-fold) and PDK2 (2.7-fold) mRNA expression but reduced PDK4 mRNA expression by 40 percent in cultured islets. Changed PDK expression was confirmed by Western blotting. These results demonstrate that in islet cells both fat and glucose regulate PDK gene and protein expression and indicate that hyperglycemia and hyperlipidemia contribute to the decline in diabetic islet PDH activity by increasing mRNA and protein expression of PDK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号