首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunogenicity of xenogeneic cartilage matrix components in a rabbit model   总被引:1,自引:0,他引:1  
Purified xenogeneic cartilage matrix components, including proteoglycan subunits, chondroitin 4 sulfate, and chondroitin 6 sulfate, were inoculated into the knee joint of rabbits, and local as well as systemic responses were evaluated. proteoglycan was associated with synovial hyperplasia and infiltrates of eosinophils and lymphocytes and with rising titers of antiproteoglycan antibodies in a tanned sheep rbc hemagglutination assay over a six-week period of weekly intra-articular injections and observations. Chondroitin sulfates failed to evoke detectable changes in the joint or serum. Immunogenicity of cartilage matrix components may play a role in allogeneic and xenogeneic osteochondral grafts, and it is also possible that autogenous matrix immunogens exist and contribute to progression of degenerative joint disease. The immunogenicity of allogeneic and autogenous cartilage matrix components remains undefined.  相似文献   

2.
Integrins are cell-surface receptors that mediate cell attachment to extracellular matrix components. The pericellular matrix in cartilage not only is a mechanical framework, but is also important for chondrocyte differentiation and stabilization of the phenotype. The interaction between chondrocytes and pericellular matrix is mediated, in part, by integrin receptors. We have previously demonstrated the presence of beta1-integrins in the cartilage matrix of organoid culture of limb buds from 12-day-old mouse embryos by immunohistological methods. In order to corroborate these findings, we have further investigated the distribution of integrins in the cartilage matrix by immunoelectron microscopy and by immunoprecipitation methods. Cartilage tissue of limb buds of 17-day-old mouse embryos was treated with collagenase and the cell-free and cellular protein-free supernatant was removed and used for immunoprecipitation experiments. Immunoprecipitation with antibodies against beta1-, alpha1-, alpha3-, and alpha5beta1-integrins and collagen type II, followed by immunoblotting with the same antibodies, demonstrated the presence of these integrins and collagen type II in the supernatant. The integrins found in the cartilage matrix could have been either secreted or shed by the cells. The question as to whether they have a function in the cartilage matrix, such as interlinking, in the matrix organization or in the stabilization of matrix components remains to be elucidated.  相似文献   

3.
We compared the distribution of fibronectin and chondronectin within the matrix of canine articular cartilage. Fibronectin was found throughout the matrix as well as pericellularly. In contrast, chondronectin was observed predominantly associated with the cell or pericellular matrix. Interactions of these molecules with matrix components in the pericellular matrix probably differs, however, since concentrations of hyaluronidase which prevented detection of pericellular fibronectin allowed detection of chondronectin. Chondronectin and fibronectin were detected in osteoarthritic cartilage as well as in disease-free cartilage. Penetration of biotinylated fibronectin into cartilage from the external medium occurred only in osteoarthritic cartilage and proceeded only from the articular surface. Disease-free cartilage appeared to maintain a barrier to fibronectin penetration from the articular surface which was sustained even after the proteoglycan content was markedly depleted by incubation of cartilage with catabolin or lipopolysaccharide. In cartilage that was proteoglycan-depleted, the only detectable penetration of external fibronectin was from the cut surface.  相似文献   

4.
Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation.  相似文献   

5.
Characterization of cathepsins in cartilage   总被引:12,自引:6,他引:6  
The presence of a cathepsin B-like enzyme in rabbit ear cartilage was established by the use of the synthetic substrates benzoyl-l-arginine amide and benzoyl-dl-arginine 2-naphthylamide. This was facilitated by using a technique that permits the incubation of a fixed weight of thin (18mu) cartilage sections with an appropriate exogenous substrate. The enzymic properties of cathepsin B in cartilage have been compared with an endogenous enzyme that liberates chondromucopeptide by degrading the cartilage matrix autocatalytically at pH5. Besides being maximally active at pH4.7, these cartilage enzymes are enhanced in activity by cysteine and inhibited by arginine analogues, iodoacetamide, chloroquine and mercuric chloride. They are not inhibited by EDTA, di-isopropyl phosphorofluoridate and diethyl p-nitrophenyl phosphate. When inhibiting the release of chondromucopeptide from cartilage at pH5, the arginine-containing synthetic substrates are hydrolysed simultaneously. These enzymes also share the same heat-inactivation characteristics at various pH values, being stable at acid pH and unstable at neutral and alkaline pH. The experimental evidence indicates that a cathepsin B-like enzyme may be partly responsible for the autolytic degradation of cartilage matrix at pH5.  相似文献   

6.
The immunohistochemical localization of types I and II collagen was examined in the following 4 cartilaginous tissues of the rat craniofacial region: the nasal septal cartilage and the spheno-occipital synchondrosis (primary cartilages), and the mandibular condylar cartilage and the cartilage at the intermaxillary suture (secondary cartilages). In both primary cartilages, type II collagen was present in the extracellular matrix (ECM) of the whole cartilaginous area, but type I collagen was completely absent from the ECM. In the secondary cartilages, type I collagen was present throughout the cartilaginous cell layers, and type II collagen was restricted to the ECM of the mature and hypertrophic cell layers. These observations indicate differences in the ECM components between primary and secondary craniofacial cartilages, and that these differences may contribute to their modes of chondrogenesis.  相似文献   

7.
The organization of knee articular cartilage of the bullfrog (Lithobates catesbeianus) differs in relation to morphofunctional adaptation in many aspects from similar structures in mammals. Thus, we investigated the structural organization and distribution of the extracellular matrix components in three articular cartilage regions in the distal epiphysis of the femur and proximal epiphysis of the tibia in male bullfrogs at 7, 540 and 1,080 days after metamorphosis. Cartilage thickness and cell density decreased in all regions with age. The basophilia differed among cartilage sites during aging. Calcium deposits were detected in growth cartilage of the femur and tibia in older animals. Immunohistochemical staining for chondroitin-6-sulfate was positive in the pericellular and territorial matrix in all samples. Positive immunostaining for type I collagen was observed in the superficial layer at all ages and in ossification centers of older animals. Reactivity to type II collagen was intense and was found throughout the stroma at all ages. Ultrastructural analysis of the epiphyseal region, in young animals, showed that the cytoplasm of chondrocytes was rich in rough endoplasmic reticulum, Golgi complex and mitochondria. In old animals, were observed a reduction in the size and number of mitochondria, disintegration of rough endoplasmic reticulum, and vacuolization of the Golgi complex. The bullfrog articular cartilage presented structural and organizational changes during aging which may contribute to the functional cartilage deterioration in old animals.  相似文献   

8.
The cartilage matrix deficiency (cmd/cmd) mouse fails to synthesize the core protein of cartilage-characteristic proteoglycan (cartilage PG). Chondrocytes from the cmd/cmd cartilage cultured in vitro produced nodules with greatly reduced extracellular matrix. Immunofluorescence staining revealed that the nodules of mutant cells differed from the normal in lacking cartilage PG and in uneven and reduced deposition of type II collagen. Exogenously added cartilage PG prepared from either normal mouse cartilage or Swarm rat chondrosarcoma to the culture medium was incorporated exclusively into the extracellular matrices of the nodules, with a concurrent correction of the abnormal distribution pattern of type II collagen. The incorporation of cartilage PG into the matrix was disturbed by hyaluronic acid or decasaccharide derived therefrom, suggesting that the incorporation process involves the interaction of added proteoglycan with hyaluronic acid. Both the hyaluronic acid-binding region and the protein-enriched core molecule prepared from rat chondrosarcoma cartilage PG could also be incorporated but, unlike the intact cartilage PG, they were distributed equally in the surrounding zones where fibroblast-like cells predominate. The results indicate that the intact form of cartilage PG is required for specific incorporation into the chondrocyte nodules, and further suggest that cartilage PG plays a regulatory role in the assembly of the matrix macromolecules.  相似文献   

9.
SOMITE CHONDROGENESIS : A Structural Analysis   总被引:2,自引:1,他引:1  
Light and electron microscopy are used in this study to compare chondrogenesis in cultured somites with vertebral chondrogenesis These studies have also characterized some of the effects of inducer tissues (notochord and spinal cord), and different nutrient media, on chondrogenesis in cultured somites Somites from stage 17 (54–60 h) chick embryos were cultured, with or without inducer tissues, and were fed nutrient medium containing either horse serum (HS) and embryo extract (EE), or fetal calf serum (FCS) and F12X Amino acid analyses were also utilized to determine the collagen content of vertebral body cartilage in which the fibrils are homogeneously thin (ca. 150 Å) and unbanded. These analyses provide strong evidence that the thin unbanded fibrils in embryonic cartilage matrix are collagen. These thin unbanded collagen fibrils, and prominent 200–800 Å protein polysaccharide granules, constitute the structured matrix components of both developing vertebral cartilage and the cartilage formed in cultured somites Similar matrix components accumulate around the inducer tissues notochord and spinal cord. These matrix components are structurally distinct from those in embryonic fibrous tissue The synthesis of matrix by the inducer tissues is associated with the inductive interaction of these tissues with somitic mesenchyme. Due to the deleterious effects of tissue isolation and culture procedures many cells die in somitic mesenchyme during the first 24 h in culture. In spite of this cell death, chondrogenic areas are recognized after 12 h in induced cultures, and through the first 2 days in all cultures there are larger accumulations of structured matrix than are present in equivalently aged somitic mesenchyme in vivo. Surviving chondrogenic areas develop into nodules of hyaline cartilage in all induced cultures, and in most non-induced cultures fed medium containing FCS and F12X There is more cell death, less matrix accumulation, and less cartilage formed in cultures fed medium containing HS and EE. The inducer tissues, as well as nutrient medium containing FCS and F12X, facilitate cell survival, the synthesis and accumulation of cartilage matrix, and the formation of cartilage nodules in cultured somites.  相似文献   

10.
力学环境对软骨基质代谢的影响   总被引:5,自引:0,他引:5  
正常关节软骨所受压力是由动态压力与静态压力交替完成。压力引起软骨一系列生理变化包括细胞及细胞外基质成分变形、组织内液体流动、水流电位和生理生化变化。这些变化直接调控细胞外基质代谢。体外构建有良好功能的组织工程化软骨是目前软骨病变、缺损理想的修复方法。研究力学环境对软骨基质代谢的影响,对构建组织工程化软骨有深远意义。  相似文献   

11.
Past work has suggested that protein polysaccharide may play a role in the calcification of cartilage. Recent electron microscopic studies on noncalcified cartilage have indicated that protein polysaccharide in cartilage matrix is represented by granules associated with collagen fibers. The present work has been designed for comparison of the matrix of noncalcified cartilage to that of calcified cartilage, with particular reference to these granules. Small blocks of tibia from 16-day embryos were fixed in cacodylate-buffered glutaraldehyde and postfixed in either phosphate- or Veronal-buffered osmium tetroxide. Special care was taken to maintain the pH above 7.0 at all times. For electron microscopy the tissues were dehydrated, embedded in Epon 812, sectioned, and stained with uranyl acetate or lead citrate. A marked decrease in the size of granules in the matrix of calcified cartilage compared to noncalcified cartilage was noted. Associated with the decrease in the size of granules was a condensation of matrix components and the presence of an amorphous electron-opaque material that was not seen in noncalcified areas. These results are interpreted to represent either a drop in concentration or a change in state of protein polysaccharide with the onset of calcification in cartilage.  相似文献   

12.
Abstract. Using electroretinogram recordings, the response of Lutzomyia longipalpis sandfly eyes to a range of wavelengths of light was measured, and spectral sensitivity determined. The eyes of both male and female adult sandflies were found to respond maximally to light in the ultraviolet region (at 340 nm) with a secondary peak in the blue-green-yellow region at 520 nm for females and 546 nm for males. The Mann-Whitney U test showed no significant differences between males and females at corresponding wavelengths.  相似文献   

13.
The calcification process that occurs in aging has been studied with the electron microscope in costal and tracheal cartilage of rats and in human costal cartilage. In these tissues, the early stage of the calcification process is induced and regulated by matrix vesicles in the same way as it occurs in epiphyseal cartilage, bone, and dentine. However, the spreading of inorganic substance from vesicles into the surrounding matrix is frequently impaired in aged cartilage, either because of a too low concentration of calcium ions, or because the structure of the cartilage matrix is not suitable for inorganic substance deposition. This shows that matrix vesicles have a calcium affinity and calcium-binding potentiality greater than that of other components of the cartilage matrix. Most matrix vesicles are produced by "Verd?mmerung der Zellen." This degenerative process of the chondrocytes leads also to the formation of pericellular halos consisting of aggregates of amorphous substance and thin filaments. Part of the material that forms these aggregates seems to be produced by disruption of matrix vesicles. Within this disruptive material, thick collagen fibrils can be formed. Moreover, this material seems capable of inducing calcification. These findings suggest that matrix vesicles, by releasing their content into the matrix, can be involved in some way in collagen formation, and that the released material maintains the calcium affinity and calcium-binding property it has within the vesicles.  相似文献   

14.
Tissue engineering of cartilage consists of two steps. Firstly, the cells from a small biopsy of patient's own tissue have to be multiplied. During this multiplication process they lose their cartilage phenotype. In the second step, these cells have to be stimulated to re-express their cartilage phenotype and produce cartilage matrix. Growth factors can be used to improve cell multiplication, redifferentiation and production of matrix. The choice of growth factors should be made for each phase of the tissue engineering process separately, taking into account cell phenotype and the presence of extracellular matrix. This paper demonstrates some examples of the use of growth factors to increase the amount, the quality and the assembly of the matrix components produced for cartilage tissue engineering. In addition it shows that the "culture history" (e.g., addition of growth factors during cell multiplication or preculture period in a 3-dimensional environment) of the cells influences the effect of growth factor addition. The data demonstrate the potency as well as the limitations of the use of growth factors in cartilage tissue engineering.  相似文献   

15.
The ultrastructural localization of alkaline phosphatase (A1P) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. A1P activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

16.
Chondrogenesis, the differentiation of mesenchyme into cartilage, results in a change in composition of the extracellular matrix. The cartilage matrix contains several unique components, including type II collagen and chondroitin sulfate proteoglycan; it also contains fibronectin, a glycoprotein that mediates the interaction of cells with their matrix. We show that chick cartilage fibronectin mRNA contains an unusual pattern of alternatively spliced exons. Specifically, it contains exon IIIB but does not contain exon IIIA whereas fibronectin mRNA from mesenchyme contains both exons IIIB and IIIA. Thus the splicing pattern of the fibronectin mRNA must change from B+A+ to B+A- during chondrogenesis. Most fibronectin mRNA in other mesenchymal tissues contains exon IIIA but little exon IIIB (B-A+). Culturing of chondrocytes (cartilage-producing cells) results in loss of exon IIIB from fibronectin mRNA (B-A-). Manipulation of culture conditions to produce more adhesive chondrocytes (treatment with hyaluronidase, transformation with Rous sarcoma virus, and treatment with retinoic acid) increases the amount of fibronectin mRNA containing exon IIIA. These results suggest that exon IIIB may mediate the interactions of chondrocytes with the unique components of the cartilage matrix and exon IIIA may play a role in chondrocyte adhesion.  相似文献   

17.
Rabbit antibodies prepared against bovine cartilage anti-invasion factor (AIF) were tested for their affinity toward antigenic sites in glutaraldehyde-fixed bovine hyaline cartilage matrix. Ultrastructural localization of the antigen-antibody complex was accomplished by the unlabeled antibody peroxidase-antiperoxidase staining technique. Unextracted and salt-extracted (1 M NaCl or 3 M GuHCl) cartilage slices were incubated with anti-AIF antibodies at a working dilution of 1:20,000. Staining occurred in unextracted matrix distributed throughout the tissue, but with regional variation in the lacunar matrix. Significantly less stain was noted in extracted tissues. The results suggest that at least certain protein components in AIF are morphologically associated with matrix complexes in aldehyde-fixed tissue.  相似文献   

18.
The extracellular matrix of epiphyseal cartilage tissue was preserved in a state believed to resemble closely that of native tissue following processing by high pressure freezing, freeze substitution, and low temperature embedding (HPF/FS). Proteoglycans (PG) were preserved in an extended state and were apparent as a reticulum of fine filamentous threads throughout the matrix. Within this network, two morphologically discrete components were discernible and identified with the carbohydrate and protein components of PG molecules. Numerous points of contact were clearly visible between components of the PG network and cross-sectioned collagen fibrils and also between PG components and chondrocytic plasmalemmata. These observations provide direct morphological indication that such relationships may exist in native epiphyseal cartilage tissue.  相似文献   

19.
Summary The ultrastructural localization of alkaline phosphatase (AlP) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. AlP activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号