首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

2.
Adult human articular cartilage contains a hyaluronic acid-binding protein of Mr 60 000-75 000, which contains disulphide bonds essential for this interaction. The molecule can compete with proteoglycan subunits for binding sites on hyaluronic acid, and can also displace proteoglycan subunits from hyaluronic acid if their interaction is not stabilized by the presence of link proteins. The abundance of this protein in the adult accounts for the reported inability to prepare high-buoyant-density proteoglycan aggregates from extracts of adult human cartilage [Roughley, White, Poole & Mort (1984) Biochem. J. 221, 637-644], whereas the deficiency of the protein in newborn human cartilage allows the normal recovery of proteoglycan aggregates from this tissue. The protein shares many common features with a hyaluronic acid-binding region derived by proteolytic treatment of a proteoglycan aggregate preparation, and this may also represent its origin in the cartilage, with its production increasing during tissue maturation.  相似文献   

3.
Cartilage proteoglycan aggregates were subjected to degradation by a metalloproteinase, capable of degrading proteoglycan, released from cartilage in culture. This proteinase was demonstrated to be immunologically identical with fibroblast stromelysin. An early release of hyaluronic acid-binding region and large glycosaminoglycan-attachment regions was observed. With increasing time the glycosaminoglycan-attachment regions were digested into smaller fragments and the hyaluronic acid-binding regions accumulated. The degradation of link proteins also occurred concomitantly with these events. Link proteins were converted into a component of similar size to that of the smallest native link protein component. N-Terminal sequence analysis of the three human link protein components indicated that they are all derived from the same protein core, which is closely homologous to that of the rat chondrosarcoma link protein. The two larger link proteins (Mr 48,000 and 44,000) contain the same N-terminal sequence, but they differ by the apparent presence of an N-linked oligosaccharide at residue 6 of the largest link protein component. The smallest link protein (Mr 41,000), however, has an N-terminal sequence equivalent to that commencing at residue 17 in the larger link proteins. It was found that the cartilage metalloproteinase cleaves link proteins in human neonatal cartilage proteoglycan aggregates at the His-16-Ile-17 bond, the same position at which the smallest link protein component appears to be derived naturally from the two larger link protein components. These results suggest that stromelysin secreted by chondrocytes can account for the increased accumulation of hyaluronic acid-binding regions and much of the degradation of link protein observed during aging within human articular cartilage.  相似文献   

4.
Hyaluronic acid-binding region and trypsin-link protein were prepared from bovine nasal cartilage proteoglycan complex after trypsin digestion. Binary complexes were reformed between trypsin-link protein and hyaluronic acid-binding region or hyaluronate. Upon trypsin treatment of these complexes, two fragments deriving from trypsin-link protein were characterized. One of them, of 20 kDa, corresponds in fact to a 140-amino acid long fragment and bears the glycosylated site of trypsin-link protein; it appears to be involved in proteoglycan/link protein interaction. The other, of 22 kDa, corresponds to the 200 C-terminal amino acids of trypsin-link protein; it appears to be involved in the binding of link protein with hyaluronic acid. A structural model of bovine trypsin-like protein depicting two distinct domains involved in hyaluronate and proteoglycan subunit interactions is proposed.  相似文献   

5.
The myeloperoxidase-derived oxidant, hypochlorite (OCl-) was shown to be able to degrade proteoglycan aggregate prepared from bovine articular cartilage. Exposure of proteoglycan aggregate to OCl- concentrations less than 10(-4) M resulted in a decrease in the size of the constituent proteoglycan monomers, which were unable to reaggregate with hyaluronate due to the loss of the hyaluronic acid binding region as indicated by immunoblotting using the monoclonal 1-C-6 antibody. Analysis of the [35S]-labeled core proteins by SDS/polyacrylamide electrophoresis and fluorography indicated a decrease in the size of the core protein. These data suggest that concentrations of OCl- below 10(-3) M results in the cleavage of the proteoglycan core protein in or near the hyaluronic acid binding region. The physiological consequences of these data are discussed. Exposure to higher concentrations (greater than 10(-3)) of OCl- caused more extensive degradation of the core protein; however, there was no evidence to suggest that OCl- cleaves glycosaminoglycan (GAG) chains.  相似文献   

6.
Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. In the course of determining the primary structure of link protein, two peptides produced by digestion of rat chondrosarcoma link protein with trypsin or chymotrypsin have been selectively purified by immunoaffinity chromatography on a column of monoclonal anti-link protein antibody (8A4) immobilized to Sepharose 4B. These peptides have been sequenced using the double-coupling dimethylaminoazobenzene isothiocyanate/phenyl isothiocyanate procedure. A consensus sequence, Cys-X-Ala-Gly-Trp-Leu-X-Asp-Gly-Ser-Val-X-Tyr-Pro-Ile-X-X-Pro, obtained by comparing the affinity-isolated tryptic peptide with the affinity-isolated chymotryptic peptide and an overlapping tryptic peptide, shows homology with a sequence obtained from the NH2-terminal of a CNBr peptide from proteo glycan core protein of bovine nasal cartilage: Ser-Ser-Ala-Gly-Trp-Leu-Ala-Asp-Arg-Ser-Val-Arg-Tyr-Pro-Ile-Ser-. We suggest that the common sequence is structurally important to the function of these proteins and may be involved in the binding of both link protein and proteoglycan to hyaluronic acid.  相似文献   

7.
1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.  相似文献   

8.
Normal adult human articular cartilage in organ culture secretes proteoglycan subunits that cannot initially interact in a normal manner with hyaluronic acid unless the latter is present at high concentrations and a neutral pH is employed. However, if the newly secreted subunit is allowed to mature in the cartilage matrix for up to 12 h, then its ability to interact is indistinguishable from that of its more mature counterparts. This conversion does not take place if the proteoglycan subunits are incubated in dilute solutions in the absence of the cartilage, and it is prevented by culturing at low temperature. The newly secreted proteoglycan subunits can, however, be induced to interact with hyaluronic acid by the presence of link proteins. The complex formed by these three components cannot be dissociated in the presence of hyaluronic acid oligosaccharides, suggesting a normal aggregate configuration. It is thus possible that proteoglycan aggregate formation within the cartilage is initially mediated by the presence of link proteins, which induce a conformational change with the hyaluronic acid-binding region of the proteoglycan subunits, although additional modification may be necessary to render any such change irreversible.  相似文献   

9.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

10.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

11.
A proteoglycan fraction prepared from bovine articular cartilage under dissociative conditions was shown to interact with three purified hyaluronic acid preparations to form stable complexes in the analytical ultracentrifuge. It is concluded from these experiments that, although link proteins are associated with hyaluronic acid and proteoglycans in complexes between these macromolecular constituents.  相似文献   

12.
The reduced and alkylated hyaluronic acid-binding region from bovine nasal cartilage proteoglycan monomers has been submitted to cyanogen bromide cleavage. The larger split fragments were purified and their N-terminal sequences reported: none of them corresponded to the N-terminal part of the native hyaluronic acid-binding region.  相似文献   

13.
Interleukin 1 stimulation of human articular cartilage in organ culture produced the concomitant release of proteoglycan fragments and latent metalloproteinase. The released fragments ranged in size from that of almost intact proteoglycan subunits to the product of limiting digestion generated by the activated metalloproteinase. None of the fragments possessed the ability to interact with hyaluronic acid. Analysis of proteoglycan aggregate digested with the activated metalloproteinase showed that isolated hyaluronic acid-binding regions were produced from the proteoglycan subunits, and that the two higher-Mr link-protein components (Mr 48,000 and 44,000) were converted into the lowest-Mr component (Mr 41,000). Link protein extracted from cartilage under stimulation with interleukin 1 showed a similar conversion. These results suggest that interleukin 1 stimulates the release of latent metalloproteinase from chondrocytes and that a proportion of the enzyme is activated in situ in the cartilage matrix. The mode of action of the activated enzyme is compatible with a role in the changes in proteoglycan structure seen in aging.  相似文献   

14.
A ternary complex of hyaluronic acid-binding region and link protein bound to hyaluronic acid was isolated from limit clostripain digests of proteoglycan aggregates isolated from the Swarm rat chondrosarcoma. Under these conditions, the hyaluronic acid-binding region has a molecular weight of ? 65,000 (HA-BR65). N-terminal amino acids in the complex were selectively l4C-carbamylated. The resulting derivatized HA-BR65 was isolated, and tryptic peptide maps were prepared and developed on two-dimensional TLC sheets. A single, labeled peptide was obtained which gave a Mr by ? 8,000 by SDS-PAGE. Chymotrypsin digestion of the ternary complex reduced the molecular weight of HA-BR65 to a polypeptide of ? 55,000 (HA-BR55) which still retains the same N-terminal tryptic peptide. Partial digestion of proteoglycan aggregates with clostripain generated a series of larger intermediates with the hyaluronic acid-binding region. Direct SDS-PAGE analysis revealed one major intermediate with Mr ? 109,000 (HA-BR109) as well as HA-BR65. After chondroitinase digestion, two additional prominent intermediates were observed on a SDS-PAGE gel at Mr ? 120,000 (HA-BR120) and ? 140,000 (HA-BR140). All the intermediates were recognized by a monoclonal antibody specific for the hyaluronic acid-binding region, and all of them contained the same N-terminal tryptic peptide. The results indicate that the N terminus of the core protein is at the hyaluronic acid-binding end of the proteoglycan and that the chondroitin sulfate chains are first present on the core protein in a region between 109,000 and 120,000 molecular weight away from the N terminus.  相似文献   

15.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds.  相似文献   

16.
Articular-cartilage proteoglycans in aging and osteoarthritis.   总被引:10,自引:5,他引:5       下载免费PDF全文
The composition of macroscopically normal hip articular cartilage obtained from dogs of various ages was studied. Pieces of cartilage with signs of degeneration were studied separately. In normal aging, the extraction yield of proteoglycans decreased; the keratan sulphate content of extracted proteoglycans increased and the chondroitin sulphate content decreased. The extracted proteoglycans were smaller in the older cartilage, mainly owing to a decrease in the chondroitin sulphate-rich region of the proteoglycan monomers. The hyaluronic acid-binding region and the keratan sulphaterich region were increased and the molar concentration of proteoglycan probably increase with increasing age. The degenerated cartilage had higher water content and the proteoglycans, as well as other tissue components, gave higher yields. The proteoglycan monomers from the degenerated cartilage were smaller than those from normal cartilage of the same age, and hence had a smaller chondroitin sulphate-rich region and some of the molecules also appeared to lack the hyaluronic acid-binding region. Increased proteolytic activity may be involved in the process of cartilage degeneration.  相似文献   

17.
Dermatan sulfate proteoglycans were isolated from adult bovine sclera and adult bovine articular cartilage. Their immunological relationships were studied by enzyme-linked immunosorbent assays using polyclonal antibodies raised against the large and small dermatan sulfate proteoglycans from sclera and a polyclonal and monoclonal antibody directed against the small dermatan sulfate proteoglycans from cartilage. The small dermatan sulfate proteoglycans from sclera and cartilage displayed immunological cross-reactivity while there was no convincing evidence of shared epitope(s) with the larger dermatan sulfate proteoglycans, nor did these larger proteoglycans share any common epitopes with each other. A hyaluronic acid binding region was detected immunologically on the larger scleral dermatan sulfate proteoglycan but was absent from the larger dermatan sulfate proteoglycan of cartilage and both the small dermatan sulfate proteoglycans. These antibodies were used in immunofluorescence microscopy to localize the scleral proteoglycans and molecules containing these epitopes in the eye. The large scleral dermatan sulfate proteoglycan was restricted to sclera while molecules related to the small scleral and cartilage proteoglycans were found in the sclera, anterior uveal tract, iris, and cornea. Amino acid sequencing of the amino-terminal regions of the core proteins of the small dermatan sulfate proteoglycans from sclera and articular cartilage showed that all the first 14 amino acids analyzed were identical and the same as reported earlier for the small bovine skin and tendon dermatan sulfate proteoglycans. These studies demonstrate that the larger dermatan sulfate proteoglycans of sclera and cartilage are chemically unrelated to each other and to the smaller dermatan sulfate proteoglycans isolated from these tissues. The latter have closely related core proteins and probably represent a molecule with a widespread distribution in which the degree of epimerization of glucuronic acid and iduronic acid varies between tissues.  相似文献   

18.
Antibodies were raised in rabbits by injection of cartilage proteoglycan monomers, isolated hyaluronic acid-binding region, polysaccharide-peptides prepared by trypsin digestion of proteoglycans and link-protein. The rabbits injected with the proteoglycan monomers made antibodies reacting with the intact proteoglycan. The antiserum contained antibodies specific for, and also reacting with, the isolated hyaluronic acid-binding region and the keratan sulphate-rich region. In addition there were probably antibodies reacting with other structures of the proteoglycan monomer. When isolated hyaluronic acid-binding region was used for immunization the antibodies obtained reacted specifically with the hyaluronic acid-binding region. The antibodies obtained from rabbits immunized with the polysaccharide-peptides reacted with the proteoglycan monomers and showed a reaction identical with that of the chondroitin sulphate-peptides isolated after trypsin digestion of proteoglycans. The antibodies prepared with the link-protein as the antigen reacted only with the link-protein and not with any preparation from the proteoglycan monomer. Neither did any of the antisera raised against the proteoglycan monomer or its substructures react with the link-protein. Separately it was shown that the peptide 'maps' prepared from trypsin digests of the link-protein and the hyaluronic acid-binding region were different. Therefore it appears that the link-protein is not structurally related to the proteoglycan or the hyaluronic acid-binding region. Digestion of proteoglycan monomers or isolated hyaluronic acid-binding region with trypsin did not destroy the antigenic sites of the hyaluronic acid-binding region. In contrast trypsin digests of previously reduced and alkylated preparations did not react with the anti-(hyaluronic acid-binding region). The trypsin digests, however, reacted with both the antibodies directed against the chondroitin sulphate-peptides and those against the keratan sulphate-peptides. Trypsin digestion of the link-proteins destroyed the antigenic site and the reactivity with the antibodies. By combining immunoassay of proteoglycan preparations before and after trypsin digestion it is feasible to quantitatively determine its substructures by using the antisera described above.  相似文献   

19.
The core protein of high buoyant density proteoglycans synthesized by chondrocytes in stage 24 chick limb bud mesenchymal cell cultures was cleaved with cyanogen bromide to produce 17 resolvable peptides on sodium dodecyl sulfate-polyacrylamide slab gels. Of these peptides, 10 appear to originate from the chondroitin sulfate-rich region, 2 appear to be derived from the keratan sulfate-rich region, and 5 seem to be derived from the hyaluronic acid-binding region. The peptides from the chondroitin sulfate-rich region are almost all large (200 to 64 kDa). In contrast, the peptides from the keratan sulfate-rich and hyaluronic acid-binding regions are relatively small (47 to 12 kDa). One peptide from the hyaluronic acid-binding region appears to contain mannose-rich N-linked oligosaccharides as inferred from its observed binding by concanavalin A. A different hyaluronic acid-binding region peptide and one of the keratan sulfate-rich peptides were shown to contain disulfide bonds and therefore may be involved in contributing to the tertiary structure of the hyaluronic acid-binding region. Based on these observations, a map of the chick chondrocyte proteoglycan core protein has been constructed.  相似文献   

20.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号