首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of 1-aryl-4-(phthalimidoalkyl) piperazines and 1-aryl-4-(naphthalimidoalkyl) piperazines were retrieved from a proprietary library based on their high structural similarity to haloperidol, an antipsychotic with antiparasitic activity, and assessed as potential antileishmanial scaffolds. Selected compounds were tested for antileishmanial activity against promastigotes of Leishmania major and Leishmania mexicana in dose-response assays. Two of the 1-aryl-4-(naphthalimidoalkyl) piperazines (compounds 10 and 11) were active against promastigotes of both Leishmania species without being toxic to human fibroblasts. Their activity was found to correlate with the length of their alkyl chains. Further analyses showed that compound 11 was also active against intracellular amastigotes of both Leishmania species. In promastigotes of both Leishmania species, compound 11 induced collapse of the mitochondrial electrochemical potential and increased the intracellular Ca2+ concentration. Therefore, it may serve as a promising lead compound for the development of novel antiparasitic drugs.  相似文献   

2.
Three adaptor molecules of the Dok family, Dok-1, Dok-2 and Dok-3 are expressed in macrophages and are involved in the negative regulation of signaling in response to lipopolysaccharide and various cytokines and growth factors. We investigated the role and the fate of these proteins following infection with Leishmania major promastigotes in macrophages. The protozoan parasite L. major causes cutaneous leishmaniasis and is known for its capacity to alter host-cell signaling and function. Dok-1/Dok-2−/− bone marrow-derived macrophages displayed normal uptake of L. major promastigotes. Following Leishmania infection, Dok-1 was barely detectable by confocal microscopy. By contrast, phagocytosis of latex beads or zymosan led to the recruitment of Dok-1 to phagosomes. In the absence of the Leishmania pathogenesis-associated metalloprotease GP63, Dok-1 was also, partially, recruited to phagosomes containing L. major promastigotes. Further biochemical analyses revealed that similar to Dok-1, Dok-2 and Dok-3 were targets of GP63. Moreover, we showed that upon infection with wild-type or Δgp63 L. major promastigotes, production of nitric oxide and tumor necrosis factor by interferon-γ-primed Dok-1/Dok-2−/− macrophages was reduced compared to WT macrophages. These results suggest that Dok proteins may be important regulators of macrophage responses to Leishmania infection.  相似文献   

3.
The differentiation from procyclic to metacyclic promastigotes (metacyclogenesis) has been correlated with an increased infectivity in a number of Leishmania species. We compared the proteomes of procyclic and metacyclic promastigotes of L. major. Lysates from either life cycle stage were resolved by 2D-PAGE, followed by Coomassie brilliant blue staining. Spots were analyzed by MALDI-TOF MS. 25 protein spots were found to be differentially expressed during metacyclogenesis. We found that proteins involved in protein synthesis were less abundant in metacyclic promastigotes, while proteins involved in motility, including paraflagellar rod protein 1D, α-tubulin and β-tubulin were more abundant. Also, two mitochondrial enzymes (succinyl-CoA synthetase β subunit and cytochrome c oxidase subunit IV) were differentially expressed in both life cycle stages. Down-regulation of proteins related to synthetic pathway in metacyclic promastigotes is consistent with the arrested growth in this life cycle stage, while up-regulation of proteins related to motility in metacyclic promastigotes is in agreement with the high motility observed in this stage.  相似文献   

4.

Background

Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development.

Methodology/Principal Findings

Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function.

Conclusions/Significance

The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets.  相似文献   

5.
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50 = 0.010 μM) while several compounds showed ~10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50 > 25 μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.  相似文献   

6.
7.
A correlation between the ratio of the cell surface protease activity to phosphatase activity and the complexity of the pattern of cell surface exposed polypeptides ofLeishmania promastigotes was demonstrated for various strains grown under similar conditions. The ratio of the cell surface protease activity to acid phosphatase activity was high forL. major andL.b. panamensis and it correlates with the expression of a single polypeptide of 63 KDa on their cell surface. Intermediate and lower ratios of these enzymatic activites relate with more complex radio-iodinated patterns: two main bands inL.b. guyanensis (70 and 58 KDa) andL.b. braziliensis (72 and 60 KDa) and three main bands 65, 50, 27 KDa in allL.m. mexicana strains tested. Evidence is presented that the acid phosphatase located on theL.m. mexicana cell surface is not an artifact due to a secondary absorption of the secreted acid phosphatase from the culture medium. These results confirm theLeishmania antigen cell surface heterogeneity. The implications on the biology ofLeishmania and the clinical manifestation of leishmaniasis are discussed.  相似文献   

8.
Leishmania infantum causes visceral leishmaniasis in all countries in the Mediterranean basin. It uses Phlebotomine sandflies as vectors where the promastigote stage develops, reproduces and becomes infective. Therefore the reproductive power of the promastigotes determines the inoculum size of the isolate. Ten Leishmania strains from Cyprus: two Leishmania donovani and eight L. infantum were used to study the proliferation capacity of the promastigotes. Population increase during a 6-day culture period was assessed quantitatively, by haematocytometer enumeration, and qualitatively by following the division history of each population during the same period by CFSE staining and flow cytometry. The strains exhibited different proliferation rates with L. infantum showing higher multiplication rates than L. donovani. These differences may represent their fitness capabilities and their ability to synchronize the multiplication activity of individual members in the population for the production of a sizeable inoculum in time for the vector’s blood meal.  相似文献   

9.
Two clones of Leishmania mexicana resistant to 5 μM (LmR5CL2) and 20 μ M (LmR20CLl) pentamidine, derived from a parental wild-type clone (LmWTCL3) were selected in vitro using a continuons drug pressure protocol. Both resistant clones expressed a cross-resistance to diminazene aceturate. No differences in their in-vitro infectivity for mouse peritoneal macrophages between wild-type and pentamidine-resistant promastigotes were observed. During these experiments, promastigotes of LmR20CL1 derived from intramacrophagic amastigote forms reverted to the pentamidine-sensitive phenotype, unlike the lower resistant ones. In the same way, when a complete developmental sequence of L. mexicana was achieved in axenic cultures, LmR20CL1 promastigotes derived from axenically growing amastigotes expressed an IC50 value close to the wild-type one, whereas resulting LmR5CL2 promastigotes remained pentamidine resistant. This modulation of the chemoresistance during the developmental life cycle could be significant in the transmission of drug-resistant strains by Phlebotominae as well as in basic research to follow drug resistance during the in-vitro and in-vivo life cycle of Leishmania.  相似文献   

10.
11.
Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.  相似文献   

12.
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.  相似文献   

13.
Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.  相似文献   

14.
Leishmania parasites experience variable nutrient levels as they cycle between the extracellular promastigote stage in the sandfly vector and the obligate intracellular amastigote stage in the mammalian host. Here we show that the surface expression of three Leishmania mexicana hexose and myo-inositol transporters is regulated in both a stage-specific and nutrient-dependent manner. GFP-chimeras of functionally active hexose transporters, LmGT2 and LmGT3, and the myo-inositol transporter, MIT, were primarily expressed in the cell body plasma membrane in rapidly dividing promastigote stages. However MIT-GFP was mostly rerouted to the multivesicular tubule (MVT)-lysosome when promastigotes reached stationary phase growth and all three nutrient transporters were targeted to the amastigote lysosome following transformation to in vitro differentiated or in vivo imaged amastigote stages. This stage-specific decrease in surface expression of GFP-tagged transporters correlated with decreased hexose or myo-inositol uptake in stationary phase promastigotes and amastigotes. The MVT-lysosme targeting of the MIT-GFP protein was reversed when promastigotes were deprived of myo-inositol, indicating that nutrient signals can override stage-specific changes in transporter distribution. The surface expression of the hexose and myo-inositol transporters was not regulated by interactions with the subpellicular cytoskeleton, as both classes of transporters associated with detergent-resistant membranes. LmGT3-GFP and MIT-GFP proteins C-terminally modified with mono-ubiquitin were constitutively transported to the MVT-lysosome, suggesting that ubiquitination may play a key role in regulating the subcellular distribution of these transporters and parasite adaptation to different nutrient conditions.  相似文献   

15.
Visceral leishmaniasis (VL) or Kala-azar, the second-largest parasitic killer worldwide, is caused by Leishmania donovani. The drugs to treat VL are toxic and expensive. Moreover, their indiscriminate use gave rise to resistant strains. The high rate of parasite proliferation within the host macrophage cells causes pathogenesis. In the proliferative pathway, FRB domain of TOR protein is ubiquitously essential. Although orthologues of mTOR protein are reported in trypanosomatids and Leishmania but therein depth molecular characterization is yet to be done. Considerable protein sequence homology exists between the TOR of kinetoplastidas and mammals. Interestingly, exogenous human FRB domain was shown to block G1 to S transition in mammalian cancer cells. Thus, we hypothesized that expression of human FRB domain would inhibit the proliferation of Leishmaniadonovani. Indeed, promastigotes stably expressing wild type human FRB domain show 4.7 and 1.5 folds less intra- and extra-cellular proliferations than that of untransfected controls. They also manifested 2.65 times lower rate of glucose stimulated oxygen consumption. The activities of all respiratory complexes were compromised in the hFRB expressing promastigotes. In these cells, depolarized mitochondria were 2-fold more than control cells. However, promastigotes expressing its mutant version (Trp2027-Phe) has shown similar characteristics like untransfected cells. Thus, this study reveals greater insights on the conserved role of TOR in the regulation of the respiratory complexes in L. donovani. The slow growing variant of FRB expressing promastigotes will have great potential to be exploited as a prophylactic agent against leishmaniasis.  相似文献   

16.
In this work, we have found an antiproliferative effect on Leishmania sp. promastigotes and axenic amastigotes by the human immunodeficiency virus (HIV) aspartyl-proteinase inhibitors, Ac-Leu-Val-Phenylalaninal, Saquinavir mesylate and Nelfinavir, the latter two being used as part of antiretroviral therapy. This effect appears to be the result of cell division blockage. In addition, these drugs induced in culture a decrease in the percentage of co-infected HIV/Leishmania monocytes and amastigotes of Leishmania per macrophage. The finding of a dose-dependent inhibition of Leishmania promastigotes aspartyl-proteinase activity by these drugs allows us to propose this activity as the drug parasite target. A direct action of these HIV aspartyl-proteinase inhibitors on the parasite, would be correlated with the effect that highly active antiretroviral therapy have had in the decrease of HIV/Leishmania coinfection, opening an interesting perspective for new drugs research development based on this novel parasite proteinase family.  相似文献   

17.
Casein kinase 1 (CK1) plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780) is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001). Analysis by flow cytometry showed a higher percentage, ∼4–5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005). These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.  相似文献   

18.
ABSTRACT. The biochemistry and immunology of Leishmania promastigotes has been extensively studied; this is due primarily to the facility with which this stage, in contrast to the amastigotes stage, can be maintained in axenic culture. Several attempts to axenically culture lines of Leishmania amastigotes have been reported in the literature. This paper summarizes methods of adaptation (low pH, elevated temperature and culture medium) and characterization of several axenic lines of Leishmania amastigotes. Based on morphological, biological, immunological and biochemical evidence, these organisms appear to resemble amastigotes from infected macrophages or tissue. The axenically cultured amastigotes appear to be distinct from shocked (heat, serum deprivation, stressed) Leishmania promastigotes in the plethora of proteins synthesized, growth (multiplication) in culture, and developmental regulation observed. These data suggest that Leishmania organisms have a significant developmental response to certain signals (pH, temperature) mimicking their in vivo macrophage milieu. The response to other environmental parameters characteristic of the host-macrophage remain to be determined. These axenically cultured amastigotes should be of interest for further immunological, biochemical and developmental investigations of the disease-maintaining stage of this parasite.  相似文献   

19.
The present study analyses complement resistance, cell surface carbohydrates expression, lipidic composition and morphology in vivo and in vitro, of Leishmania (Viannia) shawi, a parasite identified in the Amazon region, Pará state, in 1989. We demonstrated that promastigotes in the stationary (STAT) growth phase are more resistant to complement lysis than in the logarithimic (LOG) growth phase. Ultrastructural analyses and imidazol technique showed accumulation of lipids in STAT growth phase promastigotes, which was confirmed by biochemical approach. Light and electron microscopy of skin lesion in hamster footpads caused by promastigotes in STAT growth phase, 90 days post inoculation, showed amastigotes inside of macrophage and free in the tissue surrounded by collagen fibers as well as extensive inflammatory reaction with tissue destruction. We also demonstrated, using lectins by agglutination assays and flow cytometry, the presence of fucose, mannose and/or glucose carbohydrate residues on the surface of LOG and STAT promastigotes. The results constitute the first characterization essay combining biochemical and morphological approaches dedicated to LOG and STAT growth phase promastigotes of L. (V) shawi contributing for a better knowledge of this poorly studied species of the New World.  相似文献   

20.
Although Leishmania metacyclic promastigotes are generally considered resistant to human complement, studies of in vitro-cultured axenic stationary promastigotes using serum concentrations that approximate physiological plasma conditions indicate complement sensitivity. Natural Leishmania infection is caused by sand fly-inoculated promastigotes, whose complement resistance has not been analyzed systematically. We compared Leishmania susceptibility to human complement in L. infantum promastigotes derived from in vitro cultures and from sand flies. Phlebotomus perniciosus sand flies were fed with axenic promastigotes, L. infantum-infected U-937 cells, or spleen cells from L. infantum-infected hamsters. On selected days post-feeding, flies were dissected and promastigotes isolated; in addition, axenic promastigotes were obtained from culture at equivalent days of growth. In near-physiological serum concentration and temperature conditions, measurement of real-time kinetics of propidium iodide uptake showed that 90% of axenic- and sand fly-derived promastigotes were rapidly killed by complement. We found no substantial differences between promastigotes from axenic culture, those isolated from flies on different post-feeding days, or those generated in flies fed with distinct inocula. The results indicate that Leishmania susceptibility to human complement is independent of promastigote developmental stage in the sand fly mid-gut and in axenic culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号