首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We sought to elucidate the effects of different concentrations of dietary selenium on calcium ion release, MLCK levels, and muscle contraction in the uterine smooth muscle of rats. The selenium (Se) content of blood and of uterine smooth muscle tissues was detected by fluorescence spectrophotometry. Ca2+ content was measured by atomic absorption spectroscopy. Calmodulin (CaM) and MLCK RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Dietary Se intake increased the Se levels in the blood and in uterine smooth muscle tissues and increased the Ca2+ concentration in uterine smooth muscle tissues. The addition of Se also promoted CaM expression and enhanced MLCK activation in uterine smooth muscle tissues. In conclusion, Ca2+, CaM, and MLCK were regulated by Se in uterine smooth muscle; Se plays a major role in regulating smooth muscle contraction in the uterus.  相似文献   

2.
Fajmut A  Brumen M  Schuster S 《FEBS letters》2005,579(20):4361-4366
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments.  相似文献   

3.
《Cell calcium》2013,53(6):413-421
In addition to its role in artery contraction, Rho kinase (ROCK) is reported to be involved in the Ca2+ response to vasoconstrictor agonist in rat aorta. However the signaling pathway mediated by ROCK had not been investigated so far and it was not known whether ROCK also contributed to Ca2+ signaling in cultured vascular smooth muscle cells (VSMC), which undergo profound phenotypic changes. Our results showed that in VSMC, ROCK inhibition by Y-27632 or H-1152 had no effect on the Ca2+ response to vasopressin, while in aorta the vasopressin-induced Ca2+ entry was significantly decreased. The inhibition of myosin light chain kinase (MLCK) by ML-7 depressed the vasopressin-induced Ca2+ signal in aorta but not in VSMC. The difference in ROCK sensitivity of vasopressin-induced Ca2+ entry between aorta and VSMC was not related to an alteration of the RhoA/ROCK pathway. However, MLCK expression and activity were depressed in cultured cells compared to aorta. We concluded that the regulation of vasopressin-induced Ca2+ entry by ROCK in aorta could involve the myosin cytoskeleton and could be prevented by the downregulation of MLCK in VSMC. These results underline the important differences in Ca2+ regulation between whole tissue and cultured cells.  相似文献   

4.
Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber.  相似文献   

5.
Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca2+/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca2+ sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.  相似文献   

6.
In the canonical model of smooth muscle (SM) contraction, the contractile force is generated by phosphorylation of the myosin regulatory light chain (RLC20) by the myosin light chain kinase (MLCK). Moreover, phosphorylation of the myosin targeting subunit (MYPT1) of the RLC20 phosphatase (MLCP) by the RhoA-dependent ROCK kinase, inhibits the phosphatase activity and consequently inhibits dephosphorylation of RLC20 with concomitant increase in contractile force, at constant intracellular [Ca2+]. This pathway is referred to as Ca2+-sensitization. There is, however, emerging evidence suggesting that additional Ser/Thr kinases may contribute to the regulatory pathways in SM. Here, we report data implicating the p90 ribosomal S6 kinase (RSK) in SM contractility. During both Ca2+- and agonist (U46619) induced SM contraction, RSK inhibition by the highly selective compound BI-D1870 (which has no effect on MLCK or ROCK) resulted in significant suppression of contractile force. Furthermore, phosphorylation levels of RLC20 and MYPT1 were both significantly decreased. Experiments involving the irreversible MLCP inhibitor microcystin-LR, in the absence of Ca2+, revealed that the decrease in phosphorylation levels of RLC20 upon RSK inhibition are not due solely to the increase in the phosphatase activity, but reflect direct or indirect phosphorylation of RLC20 by RSK. Finally, we show that agonist (U46619) stimulation of SM leads to activation of extracellular signal-regulated kinases ERK1/2 and PDK1, consistent with a canonical activation cascade for RSK. Thus, we demonstrate a novel and important physiological function of the p90 ribosomal S6 kinase, which to date has been typically associated with the regulation of gene expression.  相似文献   

7.
ROCK (Rho-kinase), an effector molecule of RhoA, phosphorylates the myosin binding subunit (MBS) of myosin phosphatase and inhibits the phosphatase activity. This inhibition increases phosphorylation of myosin light chain (MLC) of myosin II, which is suggested to induce RhoA-mediated assembly of stress fibers and focal adhesions. ROCK is also known to directly phosphorylate MLC in vitro; however, the physiological significance of this MLC kinase activity is unknown. It is also not clear whether MLC phosphorylation alone is sufficient for the assembly of stress fibers and focal adhesions.We have developed two reagents with opposing effects on myosin phosphatase. One is an antibody against MBS that is able to inhibit myosin phosphatase activity. The other is a truncation mutant of MBS that constitutively activates myosin phosphatase. Through microinjection of these two reagents followed by immunofluorescence with a specific antibody against phosphorylated MLC, we have found that MLC phosphorylation is both necessary and sufficient for the assembly of stress fibers and focal adhesions in 3T3 fibroblasts. The assembly of stress fibers in the center of cells requires ROCK activity in addition to the inhibition of myosin phosphatase, suggesting that ROCK not only inhibits myosin phosphatase but also phosphorylates MLC directly in the center of cells. At the cell periphery, on the other hand, MLCK but not ROCK appears to be the kinase responsible for phosphorylating MLC. These results suggest that ROCK and MLCK play distinct roles in spatial regulation of MLC phosphorylation.  相似文献   

8.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

9.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

10.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

11.
Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process.We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro.The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil.The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.  相似文献   

12.
We investigated theoretically and experimentally the Ca2+-contraction coupling in rat tracheal smooth muscle. [Ca2+]i, isometric contraction and myosin light chain (MLC) phosphorylation were measured in response to 1 mM carbachol. Theoretical modeling consisted in coupling a model of Ca2+-dependent MLC kinase (MLCK) activation with a four-state model of smooth muscle contractile apparatus. Stimulation resulted in a short-time contraction obtained within 1 min, followed by a long-time contraction up to the maximal force obtained in 30 min. ML-7 and Wortmannin (MLCK inhibitors) abolished the contraction. Chelerythrine (PKC inhibitor) did not change the short-time, but reduced the long-time contraction. [Ca2+ i responses of isolated myocytes recorded during the first 90 s consisted in a fast peak, followed by a plateau phase and, in 28% of the cells, superimposed Ca2+ oscillations. MLC phosphorylation was maximal at 5 s and then decreased whereas isometric contraction followed a Hill-shaped curve. The model properly predicts the time course of MLC phosphorylation and force of the short-time response. With oscillating Ca2+ signal, the predicted force does not oscillate. According to the model, the amplitude of the plateau and the frequency of oscillations encode for the amplitude of force, whereas the peak encodes for force velocity. The long-time phase of the contraction, associated with a second increase in MLC phosphorylation, may be explained, at least partially, by MLC phosphatase (MLCP) inhibition, possibly via PKC inhibition.  相似文献   

13.
In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown.  相似文献   

14.
In airway smooth muscles, kinase/phosphatase-dependent phosphorylation and dephosphorylation of the myosin light chain (MLC) have been revealed by many authors as important steps in calcium (Ca2+) signalling pathway from the variation of Ca2+ concentration in cytosol to the force development. Here, a theoretical analysis of the control action of MLC-kinase (MLCK) and MLC-phosphatase (MLCP) in Ca2+ signalling is presented and related to the general control principles of these enzymes, which were previously studied by Reinhart Heinrich and his co-workers. The kinetic scheme of the mathematical model considers interactions among Ca2+, calmodulin (CaM) and MLCK and the well-known 4-state actomyosin latch bridge model, whereby a link between them is accomplished by the conservation relation of all species of MLCK. The mathematical model predicts the magnitude and velocity of isometric force in smooth muscles upon transient biphasic Ca2+ signal. The properties of signal transduction in the system such as the signalling time, signal duration and signal amplitude, which are reflected in the properties of force developed, are studied by the principles of the metabolic control theory. The analysis of our model predictions confirms as shown by Reinhart Heinrich and his co-workers that MLCK controls the amplitude of signal more than its duration, whereas MLCP controls both. Finally, the simulations of elevated total content of MLCK, a typical feature of bronchial muscles of asthmatic subjects and spontaneously hypertensive rats as well as potentiation of MLCP catalytic activity, are carried out and are discussed in view of an increase in the force magnitude.  相似文献   

15.
Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses1. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation2. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency4. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively5. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed.Contraction of smooth muscle is generally regulated by the cytosolic Ca2+ concentration ([Ca2+]i) plus sensitivity to Ca2+, of the contractile elements in response to changes in the environment surrounding the cell6. [Ca2+]i is determined by the combination of the movement of Ca2+ through plasma membrane ligand or voltage gated Ca2+ channels and the release and uptake of Ca2+ from internal stores. Cytosolic Ca2+ binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction8. However, the sensitivity of this pathway to Ca2+ can be regulated by the MLC phosphatase (MLCP)9. MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17.Here, we present a method to evaluate changes in [Ca2+]i over time in isolated, perfused lymphatics in order to study Ca2+-dependent and Ca2+-sensitizing mechanisms of lymphatic smooth muscle contraction. Using isolated rat mesenteric collecting lymphatics we studied stretch-induced changes in [Ca2+]i and contractile activity. The isolated lymphatic model offers the advantage that pressure, flow, and the chemical composition of the bath solution can be tightly controlled. [Ca2+]i was determined by loading lymphatics with the ratiometric, Ca2+-binding dye Fura-2. These studies will provide a new approach to the broader problem of studying the different molecular mechanisms that regulate phasic contractions versus tonic constriction in lymphatic smooth muscle.  相似文献   

16.
Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.  相似文献   

17.
Ureteric peristalsis, which occurs via alternating contraction and relaxation of ureteric smooth muscle, ensures the unidirectional flow of urine from the kidney to the bladder. Understanding of the molecular mechanisms underlying ureteric excitation–contraction coupling, however, is limited. To address these knowledge deficits, and in particular to test the hypothesis that Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway plays an important role in ureteric smooth muscle contraction, we carried out a thorough characterization of the electrical activity, Ca2+ signaling, MYPT1 (myosin targeting subunit of myosin light chain phosphatase, MLCP) and myosin regulatory light chain (LC20) phosphorylation, and force responses to membrane depolarization induced by KCl (electromechanical coupling) and carbachol (CCh) (pharmacomechanical coupling). The effects of ROK inhibition on these parameters were investigated. We conclude that the tonic, but not the phasic component of KCl- or CCh-induced ureteric smooth muscle contraction is highly dependent on ROK-catalyzed phosphorylation of MYPT1 at T855, leading to inhibition of MLCP and increased LC20 phosphorylation.  相似文献   

18.
Sustained contractions of smooth muscle cells (SMC) maintain basal tone in the internal anal sphincter (IAS). To examine the molecular bases for the myogenic tone in the IAS, the present studies focused on the role of RhoA/ROCK in the SMC isolated from the IAS vs. the adjoining phasic tissues of the rectal smooth muscle (RSM) and anococcygeus smooth muscle (ASM) of rat. We also compared cellular distribution of RhoA/ROCK, levels of RhoA-GTP, RhoA-Rho guanine nucleotide dissociation inhibitor (GDI) complex formation, levels of p(Thr696)-MYPT1, and SMC relaxation caused by RhoA inhibition. Levels of RhoA/ROCK were higher at the cell membrane in the IAS SMC compared with those from the RSM and ASM. C3 exoenzyme (RhoA inhibitor) and Y 27632 (ROCK inhibitor) caused a concentration-dependent relaxation of the IAS SMC. In addition, active ROCK-II (primary isoform of ROCK in SMC) caused further shortening in the IAS SMC. C3 exoenzyme increased RhoA-RhoGDI binding and reduced the levels of RhoA-GTP and p(Thr696)-MYPT1. ROCK inhibitor attenuated PKC-induced contractions in IAS SMC. Conversely, a PKC inhibitor (G? 6850, which causes partial relaxation of the SMC) had no significant effect on ROCK-II-induced contractions. Further experiments showed the highest levels of RhoA, active form of RhoA (RhoA-GTP), ROCK-II, 20-kDa myosin regulatory light chain (MLC(20)), phospho-MYPT1, and phospho-MLC(20) in the IAS vs. RSM and ASM SMC. However, the trend was the reverse with the levels of inactive RhoA (GDP-RhoA-RhoGDI complex) and MYPT1. We conclude that RhoA/ROCK play a critical role in maintenance of spontaneous tone in the IAS SMC via inhibition of myosin light chain phosphatase.  相似文献   

19.
Relationships among biochemical signaling processes involved in Ca2+/calmodulin (CaM)-dependent phosphorylation of smooth muscle myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) were determined. A genetically-encoded biosensor MLCK for measuring Ca2+-dependent CaM binding and activation was expressed in smooth muscles of transgenic mice. We performed real-time evaluations of the relationships among [Ca2+]i, MLCK activation, and contraction in urinary bladder smooth muscle strips neurally stimulated for 3 s. Latencies for the onset of [Ca2+]i and kinase activation were 55 ± 8 and 65 ± 6 ms, respectively. Both increased with RLC phosphorylation at 100 ms, whereas force latency was 109 ± 3 ms. [Ca2+]i, kinase activation, and RLC phosphorylation responses were maximal by 1.2 s, whereas force increased more slowly to a maximal value at 3 s. A delayed temporal response between RLC phosphorylation and force is probably due to mechanical effects associated with elastic elements in the tissue. MLCK activation partially declined at 3 s of stimulation with no change in [Ca2+]i and also declined more rapidly than [Ca2+]i during relaxation. The apparent desensitization of MLCK to Ca2+ activation appears to be due to phosphorylation in its calmodulin binding segment. Phosphorylation of two myosin light chain phosphatase regulatory proteins (MYPT1 and CPI-17) or a protein implicated in strengthening membrane adhesion complexes for force transmission (paxillin) did not change during force development. Thus, neural stimulation leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation in phasic smooth muscle, showing a tightly coupled Ca2+ signaling complex as an elementary mechanism initiating contraction.Increases in [Ca2+]i3 in smooth muscle cells lead to Ca2+/CaM-dependent MLCK activation and RLC phosphorylation. Phosphorylation of RLC increases actin-activated myosin MgATPase activity leading to myosin cross-bridge cycling with force development (13).The activation of smooth muscle contraction may be affected by multiple cellular processes. Previous investigations show that free Ca2+/CaM is limiting for kinase activation despite the abundance of total CaM (46). The extent of RLC phosphorylation is balanced by the actions of MLCK and myosin light chain phosphatase, which is composed of three distinct protein subunits (7). The myosin phosphatase targeting subunit, MYPT1, in smooth muscle binds to myosin filaments, thus targeting the 37-kDa catalytic subunit (type 1 serine/threonine phosphatase, PP1c) to phosphorylated RLC. RLC phosphorylation and muscle force may be regulated by additional signaling pathways involving phosphorylation of RLC by Ca2+-independent kinase(s) and inhibition of myosin light chain phosphatase, processes that increase the contraction response at fixed [Ca2+]i (Ca2+-sensitization) (814). Many studies indicate that agonist-mediated Ca2+-sensitization most often reflects decreased myosin light chain phosphatase activity involving two major pathways including MYPT1 phosphorylation by a Rho kinase pathway and phosphorylation of CPI-17 by PKC (8, 1416). Additionally, phosphorylation of MLCK in its calmodulin-binding sequence by a Ca2+/calmodulin-dependent kinase pathway has been implicated in Ca2+ desensitization of RLC phosphorylation (1719). How these signaling pathways intersect the responses of the primary Ca2+/CaM pathway during physiological neural stimulation is not known.There is also evidence that smooth muscle contraction requires the polymerization of submembranous cytoskeletal actin filaments to strengthen membrane adhesion complexes involved in transmitting force between actin-myosin filaments and external force-transmitting structures (2023). In tracheal smooth muscle, paxillin at membrane adhesions undergoes tyrosine phosphorylation in response to contractile stimulation by an agonist, and this phosphorylation increases concurrently with force development in response to agonist. Expression of nonphosphorylatable paxillin mutants in tracheal muscle suppresses acetylcholine-induced tyrosine phosphorylation of paxillin, tension development, and actin polymerization without affecting RLC phosphorylation (24, 25). Thus, paxillin phosphorylation may play an important role in tension development in smooth muscle independently of RLC phosphorylation and cross-bridge cycling.Specific models relating signaling mechanisms in the smooth muscle cell to contraction dynamics are limited when cells in tissues are stimulated slowly and asynchronously by agonist diffusing into the preparation. Field stimulation leading to the rapid release of neurotransmitters from nerves embedded in the tissue avoids these problems associated with agonist diffusion (26, 27). In urinary bladder smooth muscle, phasic contractions are brought about by the parasympathetic nervous system. Upon activation, parasympathetic nerve varicosities release the two neurotransmitters, acetylcholine and ATP, that bind to muscarinic and purinergic receptors, respectively. They cause smooth muscle contraction by inducing Ca2+ transients as elementary signals in the process of nerve-smooth muscle communication (2830). We recently reported the development of a genetically encoded, CaM-sensor for activation of MLCK. The CaM-sensor MLCK contains short smooth muscle MLCK fused to two fluorophores, enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, linked by the MLCK calmodulin binding sequence (6, 14, 31). Upon dimerization, there is significant FRET from the donor enhanced cyan fluorescent protein to the acceptor enhanced yellow fluorescent protein. Ca2+/CaM binding dissociates the dimer resulting in a decrease in FRET intensity coincident with activation of kinase activity (31). Thus, CaM-sensor MLCK is capable of directly monitoring Ca2+/CaM binding and activation of the kinase in smooth muscle tissues where it is expressed specifically in smooth muscle cells of transgenic mice. We therefore combined neural stimulation with real-time measurements of [Ca2+]i, MLCK activation, and force development in smooth muscle tissue from these mice. Additionally, RLC phosphorylation was measured precisely at specific times following neural stimulation in tissues frozen by a rapid-release electronic freezing device (26, 27). Results from these studies reveal that physiological stimulation of smooth muscle cells by neurotransmitter release leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation at similar rates without the apparent activities of Ca2+-independent kinases, inhibition of myosin light chain phosphatase, or paxillin phosphorylation. Thus, the elemental processes for phasic smooth muscle contraction are represented by this tightly coupled Ca2+ signaling complex.  相似文献   

20.
Cell shape change and cytoskeletal reorganization are known to be involved in the chondrogenesis. Negative role of RhoA, a cytoskeleton-regulating protein, and its downstream target, Rho-associated protein kinase (ROCK) in the chondrogenesis has been studied in many different culture systems including primary chondrocytes, chondrogenic cell lines, dedifferentiated chondrocytes, and micromass culture of mesenchymal cells. To further investigate the role of RhoA and ROCK in the chondrogenesis, we examined the RhoA-ROCK-myosin light chains (MLC) pathway in low density culture of chick limb bud mesenchymal cells. We observed for the first time that inhibition of RhoA by C3 cell-permeable transferase, CT04, induced chondrogenesis of undifferentiated mesenchymal single cells following dissolution of actin stress fibers. Inhibition of RhoA activity by CT04 was confirmed by pull down assay using the Rho-GTP binding domain of Rhotekin. CT04 also inhibited ROCK activity. In contrast, inhibition of ROCK by Y27632 neither altered the actin stress fibers nor induced chondrogenesis. In addition, inhibition of RhoA or ROCK did not affect the phosphorylation of MLC. Inhibition of myosin light chain kinase (MLCK) by ML-7 or inhibition of myosin ATPase with blebbistatin dissolved actin stress fibers and induced chondrogenesis. ML-7 reduced the MLC phosphorylation. Taken together, our current study suggests that RhoA uses other pathway than ROCK/MLC in the modulation of actin stress fibers and chondrogenesis. Our data also imply that, irrespective of mechanisms, dissolution of actin stress fibers is crucial for chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号