首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular disease and diabetes mellitus are prominent features of glucose and lipid metabolism disorders. Adiponectin is a key adipokine that is largely involved in glucose and lipid metabolism processes. A growing body of evidence suggests that chronic exposure to inorganic arsenic is associated with cardiovascular disease and diabetes mellitus. We hypothesized that arsenic exposure may increase the risk of cardiovascular disease and diabetes mellitus by affecting the level of adiponectin. In this study, we examined serum adiponectin levels, as well as serum levels of metabolic measures (including fasting blood glucose, insulin, total cholesterol, triglyceride, and high-density lipoprotein (HDL)-cholesterol) in C57BL/6 mice exposed to inorganic arsenic in drinking water (5 and 50 ppm NaAsO2) for 18 weeks. Body mass and adiposity were monitored throughout the study. We found no significant changes in serum insulin and glucose levels in mice treated with arsenic for 18 weeks. However, arsenic exposure decreased serum levels of adiponectin, triglyceride, and HDL-cholesterol. Further, an inverse relationship was observed between urinary concentrations of total arsenic and serum levels of adiponectin. This study suggests that arsenic exposure could disturb the metabolism of lipids and increase the risk of cardiovascular disease by reducing the level of adiponectin.  相似文献   

2.
Spirulina (Spirulina platensis), has numerous health benefits including antioxidant, immunomodulatory, and anti-inflammatory activities, works against heavy metal toxicity, and is often used as a food supplement in human, animals, birds and fishes. This study aimed to evaluate the protective ability of the dietary spirulina against the toxic effects of inorganic arsenic (iAs) on male reproductive parameters in rats. Seventy-two mature Long-Evans male rats, dividing into six groups (T0, T1, T2, T3, T4 and T5) (12 rats/group) were included in this study. The T3, T4 and T5 group rats were treated with three consecutive doses (1.0 g, 1.5 g and 2.0 g/kg feed) of spirulina in feed along with 3.0 mg NaAsO2/kg body weight (BW) in drinking water (DW) daily for 90 days. Each rat of group T1 received NaAsO2 (3.0 mg/kg BW) in DW, and those of T2 group were fed with spirulina (2.0 g/kg feed) daily for 90 days. The rats of group T0 served as the control with normal feed and water. Total arsenic (tAs) contents, reproductive parameters (testicular weight, sperm motility and morphology), and histological changes in the testicles were evaluated in these rats. Arsenic dosing significantly (p=0.003, Kruskal-Wallis test) increased the tAs contents in the testicles, decreased testes weight, sperm morphology and motility compared to the controls. The effect of arsenic dosing was also evidenced by the histological changes like decreased germinal layers in the seminiferous tubules of the treated rats. Moreover, dietary spirulina (2.0 g/kg feed) supplementation significantly (p=0.011, Kruskal-Wallis test) lowered tAs contents in testicles and increases testes weights, sperm motility and morphology. Therefore, spirulina can be used as an effective dietary supplement to ameliorate the adverse effects of arsenic induced reproductive toxicities. However, further study is required to elucidate the underlying molecular mechanisms of reduction of arsenic induced reproductive toxicity by spirulina.  相似文献   

3.
The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO2 from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood–brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.  相似文献   

4.
Sodium arsenite (NaAsO2) is a well-established environmental carcinogen that has been found to cause various human malignant tumors. Thus, how to prevent the deleterious effects caused by NaAsO2 has received widely concerns. Resveratrol (3,4′,5-trihydroxystilbene), a polyphenol found in numerous plant species, has recently been known as a natural and powerful antioxidant. However, whether resveratrol could attenuate the toxicity of NaAsO2 and its detailed mechanisms have not been reported. In this study, the protective effects of resveratrol against NaAsO2-induced oxidative and genetic damage as well as apoptosis were evaluated for the first time. We demonstrated that cotreatment of human bronchial epithelial cell with 5 μM resveratrol for 24 h effectively reduced the levels of 30 μM NaAsO2-induced reactive oxygen species, chromosomal and DNA damage, and cell apoptosis. Revseratrol was also showed to significantly elevate the concentration of glutathione (GSH) and the activities of its relevant enzymes as compared with NaAsO2 alone, indicating that resveratrol ameliorates the toxicity of NaAsO2 by modulating the process of GSH biosynthesis, recycling and utilization. Our findings further suggest that GSH homeostasis represents one of the detoxification mechanisms responding to NaAsO2 exposure, and resveratrol plays a protective role in the regulation of oxidative and genetic damage as well as apoptosis through the modulation of GSH homeostasis.
Figure
Protective role of resveratrol in NaAsO2‐induced oxidative damage  相似文献   

5.
Exposure to arsenic in drinking water results in a widespread environmental problem in the world, and the brain is a major target. Neuroglobin is a vertebrate heme protein regarded as playing neuroprotective role in hypoxia or oxidative stress. In this study, we investigated the toxic effects of sodium arsenite (NaAsO2) on primary cultured rat cerebellar granule neurons (CGNs) and detected neuroglobin (Ngb) expression in rat CGNs exposed to NaAsO2. Our results show that apoptosis was obviously induced by NaAsO2 treatment in rat CGNs by annexin V-fluorescein isothiocyanate assay. Intracellular reactive oxygen species generation increased significantly in the cells exposed to NaAsO2, and the apoptotic effects could be partially reversed by antioxidant N-acetyl-l-cysteine. Ngb protein and mRNA expression were significantly downregulated in rat CGNs shortly after NaAsO2 exposure and then upregulated after a longer time of exposure. Furthermore, mRNA expression changed more than protein expression and the toxic effect of NaAsO2 on Ngb expression is dose dependent. Higher Ngb expression was also detected in rat cerebellum, but not in other parts (cerebrum, hippocampus, and midbrain) of the brain exposed to NaAsO2 for 16 weeks. Taken together, cytotoxic effects of NaAsO2 on rat CGNs is induced at least partly by oxidative stress and Ngb may influence the course of arsenic toxicity in rat CGNs and rat cerebellum.  相似文献   

6.
The objective of this work was to assess exposure to mercury (Hg) and its induction of oxidative stress in 155 healthy lactating Saudi mothers and their infants. Samples of breast milk and blood were collected from the mothers, while urine was taken from both infants and mothers. Both urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were measured in mothers and infants as biomarkers of oxidative stress. The mean concentration of Hg in breast milk was 1.19 μg/L (range 0.012–6.44 μg/L) with only one mother having Hg >4 μg/L, the upper limit established by the US Agency for Toxic Substance and Disease Registry. However, 57.4 % had Hg ≥1 μg/L, the background level for Hg in human milk. The mean urinary Hg corrected for creatinine (Hg-C) in mothers and infants was 1.47 and 7.90 μg/g creatinine, respectively, with a significant correlation between the two (p?<?0.001). Urinary Hg levels over 5 μg/g creatinine (the background level in an unexposed population) were found in 3.3 % of mothers and 50.1 % of infants. None of the mothers had total blood Hg above the US Environmental Protection Agency’s maximum reference dose of 5.8 μg/L. No correlation was noted between urinary Hg in infants and Hg in breast milk (p?>?0.05). Hg in breast milk, though, was associated with Hg in blood (p?<?0.001), suggesting the efficient transfer of Hg from blood to milk. Hg in the breast milk of mothers and in the urine of infants affected the excretion of urinary MDA and 8-OHdG, respectively, in a dose-related manner. These findings reveal for the first time lactational exposure to Hg-induced oxidative stress in breast-fed infants, which may play a role in pathogenesis, particularly during neurodevelopment. This will also contribute to the debate over the benefits of breast milk versus the adverse effects of exposure to pollutants. Nevertheless, breastfeeding should not be discouraged, but efforts should be made to identify and eliminate the source of Hg exposure in the population.  相似文献   

7.
The suitability to assess zearalenone (ZEA) exposure in pigs of a commercial ELISA kit for ZEA analysis in urine was tested. A daily dose of 0, 5, 10, 20 and 40 μg synthetic ZEA per kilogram BW was administered via the feed to four gilts per dose group, and after 3 and after 7 days of ZEA intake, urine samples were assayed with the ELISA which has a relative cross-reactivity of 42 % with α-zearalenol. The concentration of urinary ZEA equivalents (ZEA plus 42 % of α-zearalenol present) did not differ between day 4 and day 8 (P?=?0.50) within each dose group. The urinary ZEA equivalent/creatinine ratio was tightly correlated with ZEA intake (r?=?0.95). The urinary ZEA equivalent/creatinine values at 0 and 40 μg/kg BW were distinctly different from those of the intermediate dose levels, whereas there was some overlapping of the individual values at the dose levels 5, 10 and 20 μg/kg BW. The urinary ZEA equivalent/creatinine ratio can be used as a biomarker for ZEA exposure in pigs provided that urine samples of several animals receiving the same diet are assayed, either separately or after pooling.  相似文献   

8.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

9.
Blood cells and biofluid proteomics are emerging as a valuable tool to assess effects of interventions on health and disease. This study is aimed to assess the amount and variability of proteins from platelets, peripheral blood mononuclear cells (PBMC), plasma, urine and saliva from ten healthy volunteers for proteomics analysis, and whether protein yield is affected by prolonged fasting. Volunteers provided blood, saliva and morning urine samples once a week for 4 weeks after an overnight fast. Volunteers were fasted for a further 24 h after the fourth sampling before providing their final samples. Each 10 mL whole blood provided 400–1,500 μg protein from platelets, and 100–600 μg from PBMC. 30 μL plasma depleted of albumin and IgG provided 350–650 μg protein. A sample of morning urine provided 0.9–8.6 mg protein/dL, and a sample of saliva provided 70–950 μg protein/mL. None of these yields were influenced by the degree of fasting (overnight or 36 h). In conclusion, in contrast to the yields from plasma, platelets and PBMC, the protein yields of urine and saliva samples were highly variable within and between subjects. Certain disease conditions may cause higher or lower PBMC counts and thus protein yields, or increased urinary protein levels.  相似文献   

10.
Arsenic is a notorious environmental toxicant and was found to cause oxidative stress in cultured cells and animals. However, little work has been done in human studies, especially for the population occupationally exposed to arsenic. In order to investigate the effect of occupational exposure to arsenic in oxidative stress, we measured urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) from 90 semiconductor workers including 50 exposed and 40 nonexposed subjects. A highly sensitive and specific isotope dilution LC-MS/MS method was used for quantification of 8-oxodGuo. The levels of inorganic arsenic (iAs3+, iAs5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in urine were determined by high-performance liquid chromatography-flow injection atomic absorption spectrometry (HPLC-FIAAS). Results showed that the mean urinary concentrations of total arsenic and 8-oxodGuo were significantly higher for exposed workers compared with the nonexposed workers. In addition, elevated urinary 8-oxodGuo concentrations of exposed workers were correlated with urinary levels of MMA (r = 0.44, P < 0.005) and the extent of primary methylation (the ratio of MMA to inorganic arsenic) (r = 0.40, P < 0.005). These findings suggested that occupational exposure to arsenic could result in the induction of oxidative stress. The presence and/or formation of MMA could play an important role in arsenic-involved injuries.  相似文献   

11.
Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMAIII), which accumulates in glial cells without compromising cell viability. MMAIII LD50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMAIII concentrations (50–1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMAIII concentrations that also induced TNF-α over-expression. Other effects of MMAIII on cortical astrocytes included increased proliferative and metabolic activity. All tested MMAIII concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMAIII induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.  相似文献   

12.
BackgroundChronic exposure to high concentrations of inorganic arsenic (NaAsO2) in drinking water is related to an increase in the risk of liver toxicity and diabetes. Diosmin has various pharmacological properties, including antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effects of diosmin on diabetes and hepatotoxicity caused by NaAsO2.MethodsSixty male 8-week-old NMRI mice, weighing 25 ± 2 g, were randomly selected and put into six groups. The control (Group 1) was treated orally with distilled water, group 2 was treated with diosmin (100 mg/kg, p.o), group 3 received NaAsO2 (10 mg/kg, p.o), and groups 4, 5, 6 received diosmin (25, 50, 100 mg/kg, p.o), respectively and NaAsO2 (10 mg/kg, p.o). After 29 days, fasting blood sugar (FBS) measurement and glucose tolerance test were done. The mice were sacrificed on day 31, and blood and tissue (liver and pancreas) samples were taken. Then, serum and tissue samples were studied for biochemical and histological evaluations.ResultsThe results demonstrated that diosmin ameliorated glucose intolerance and decreased FBS compared to the NaAsO2 group. Diosmin (50 and 100 mg/kg) improved the serum factors of liver function (alanine aminotransferase, aspartate transaminase, and alkaline phosphatase) in the groups receiving NaAsO2. Moreover, increased levels of nitric oxide, tumor necrosis factor-alpha, and thiobarbituric acid reactive substances in liver tissue induced by NaAsO2 were diminished by diosmin treatment. Administration of diosmin increased total thiol and enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase in liver tissue. Furthermore, treatment with diosmin reduced the increase in protein amount of Sirtuin 3 and nuclear factor kappa B in the groups receiving NaAsO2. Also, the liver and pancreas histological lesions induced by NaAsO2 were attenuated by diosmin treatment.ConclusionDiosmin has a preventive effect against hepatotoxicity and diabetes induced by NaAsO2 in mice through its antioxidant and anti-inflammatory properties.  相似文献   

13.
This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L?1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L?1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg?1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L?1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.  相似文献   

14.
Augmentation of mitochondrial oxidative stress through activating a series of deadly events has implicated as the main culprit of arsenic toxicity and therapeutic approaches based on improving mitochondrial function hold a great promise for attenuating the arsenic-induced toxicity. Acetyl-l-carnitine (ALC) through balancing the coenzyme A (CoA)/acyl-CoA ratio plays an important role in mitochondrial metabolism and thereby can help protect hippocampal neurons from oxidative damage. In the present study, we aimed to explore the effect of arsenic interactions on the mitochondrial function in the hippocampus of rats. Rats were randomly divided into five groups of control (distilled water), sodium arsenite (NaAsO2, 20 mg/kg), and co-treatment of NaAsO2 with various doses of ALC in three groups (100, 200, 300 mg/kg) and were treated orally for 21 consecutive days. Our results point out that arsenic exposure caused oxidative stress in rats’ hippocampus, which led to the reactive oxygen species (ROS) generation, mitochondrial swelling, the collapse of the mitochondrial membrane potential, and release of cytochrome c. It also altered Bcl-2/Bax expression ratio and increased caspase-3 and caspase-9 activities. Furthermore, arsenic exposure via activation of NF-κB and microglia increased inflammation. ALC could concentration-dependently counteract the arsenic-induced oxidative stress, modulate the antioxidant defense capacity, and improve mitochondrial functions. In addition, ALC decreased the expression of both death-associated proteins and of inflammatory markers. These findings indicate that ALC improved the arsenic-induced hippocampal mitochondrial dysfunction which underlines the importance of ALC in providing a possible therapeutic strategy for the prevention of arsenic-induced neurodegeneration.  相似文献   

15.
Interstitial cystitis (IC) is a bladder syndrome characterized by pelvic pain and urinary frequency without infection or other identifiable pathology. There are no effective treatments to cure IC. This study investigated the effects of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) injection on IC rat model. Furthermore, we used a coculture system to find the possible molecular mechanism on the human uroepithelial cells (SV-HUC-1), which was the cell model of IC. A rat model of IC was established via systemic injection with cyclophosphamide (CYP) and a cell model of IC was induced by being exposed to tumor necrosis factor (TNF)-α (10 ng/ml). After one week, UC-MSCs injection significantly ameliorated the bladder voiding function in IC rat model. And the Histo- and immunohistochemical analyses showed that UC-MSCs can repair impaired bladder, reduce mast cell infiltration and inhibit apoptosis of urothelium. ELISA results showed that UC-MSCs can decrease IL-1β, IL-6 and TNF-α in bladder. In the coculture system, UC-MSCs can promote proliferation of impaired SV-HUC-1 cells, and inhibit apoptosis. However, while knocked down EGF secreted by UC-MSCs with siRNA, the effects would be weaken. Western blot showed that UC-MSCs increase protein expression levels of p-AKT and p-mTOR in SV-HUC-1 cells, and decrease the levels of cleaved caspase-3. Taken together, we provide evidence that UC-MSCs therapy can successfully alleviate IC in a preclinical animal Model and cell model by alleviating inflammation, promoting proliferation and inhibiting apoptosis. In addition, we demonstrate that the AKT/mTOR signaling pathway was activated.  相似文献   

16.
Extensive epidemiological study implicates that high arsenic content in artesian well water is the causal factor responsible for Blackfoot disease. We determine the arsenic concentration in urine samples of patients with Blackfoot and Bowen’s diseases and examine whether there exists any discrepancy of urinary arsenic concentrations among patients and the normal population. The analyses were made by hydride atomic absorption spectrophotometry (AAS) and the analytical reliability of the method was checked with a standard urine sample (ORTHO Bi-Level Urine Metal Control). The results show that the mean urinary arsenic concentration in 100 healthy adults is 63.4±29.7 μg/L, and those means for 23 and 11 patients with Blackfoot disease and Bowen’s disease are 75.7±39.1 μg/L (P vs controls >0.05) and 201±58 μg/L (P vs controls <0.001), respectively. From the analytical results obtained, we cannot conclude that urinary arsenic is associated with Blackfoot disease, as was disclosed from the epidemiological studies. However, urinary arsenic concentrations are possibly very closely associated with Bowen’s disease.  相似文献   

17.
The aim of this study was to evaluate the bioavailability of arsenic (As) through cultured oyster Crassostrea gigas and Crassostrea corteziensis from four coastal lagoons (SE Gulf of California). Organisms were collected in two seasons (rainy and dry season), and they were analyzed for total arsenic and chemical speciation of this element. The concentrations of As in oyster soft tissue fluctuated between 5.44 and 9.56 μg/g for rainy season and 6.46 and 8.33 μg/g for dry season (dry weight) in C. gigas. In C. corteziensis, the As concentrations were <5 μg/g for both seasons (dry weight). Arsenic speciation indicated arsenobetaine as the major arseno-compound accounting for 43.2–76.3 % of total content of As. Lower contributions were obtained for non-extractable As (11.3–17.5 %) and other molecules such as arsenocholine and methyl-arsonate (<5 %). Inorganic arsenic was detectable in only two samples, at concentrations lower than <0.1 μg/g. These As data are the first generated for these mollusks in NW Mexico and indicate that C. gigas and C. corteziensis farmed in this area are safe for human consumption in terms of arseno-compounds.  相似文献   

18.
This study investigated the reference level of urinary cadmium (UCd) of two Cd-polluted areas and one non-polluted area in China by applying the updated hybrid approach. Urinary N-acetyl-β-d-glucosaminidase (NAG) and β-2-microglobulin (β2MG) were considered as indicators of early renal dysfunction. UCd was regarded as an indicator of the total internal Cd exposure. We recruited 3285 inhabitants for this investigation. Among them, 2106 were from polluted areas, while the other 1179 were from non-polluted areas. BMDL10 (the lower 95% confidence limit of the benchmark dose (BMD)) of UCd for NAG was 1.55 μg/g creatine in men and 1.59 μg/g creatine in women. Using β2MG as the renal effect marker, BMDL10 of UCd was 1.58 μg/g and 1.53 μg/g in men and women, respectively. Our BMDL estimates accounting for age were lower than those reported in previous studies, suggesting that policies to control Cd exposure are warranted.  相似文献   

19.
Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals.  相似文献   

20.
The aim of this study was to compare ochratoxin A (OTA) levels in pig tissues and biological fluids after animal exposure to contaminated diet (250 μg OTA/kg of feed) during 4 weeks of fattening. OTA concentrations were quantified using a validated immunoassay method (ELISA) and high-performance liquid chromatography with fluorescence detector (HPLC-FD). The highest mean OTA concentration in pig tissues was determined in kidneys of exposed animals (13.87?±?1.41 μg/kg), followed by lungs (10.47?±?1.97 μg/kg), liver (7.28?±?1.75 μg/kg), spleen (4.81?±?0.99 μg/kg), muscle tissue (4.72?±?0.86 μg/kg), fat tissue (4.11?±?0.88 μg/kg), heart (3.71?±?1.09 μg/kg), and brain (3.01?±?0.25 μg/kg). Furthermore, on the last day of exposure (day 28), significantly higher mean OTA levels were determined in urine (16.06?±?3.09 μg/L) in comparison to serum (4.77?±?1.57 μg/L) showing that OTA urine analysis could be a good marker to identify elevated levels of this contaminant in porcine tissues used for human consumption. This study gave guidelines for the most efficient OTA control in pig-derived biological materials that can be exercised at slaughterhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号