首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Great controversy exists regarding the biologic responses of osteoblasts to X-ray irradiation, and the mechanisms are poorly understood. In this study, the biological effects of low-dose radiation on stimulating osteoblast proliferation, differentiation and fracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5 Gy) X-ray irradiation induced the cell viability and proliferation of MC3T3-E1 cells. However, high-dose (5 Gy) X-ray irradiation inhibited the viability and proliferation of osteoblasts. In addition, dynamic variations in osteoblast differentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterix and osteocalcin, were observed after both low-dose and high-dose irradiation by Western blot analysis. Second, fracture healing was evaluated via histology and gene expression after single-dose X-ray irradiation, and low-dose X-ray irradiation accelerates fracture healing of closed femoral fractures in rats. In low-dose X-ray irradiated fractures, an increase in proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation and fracture calluses was observed. In addition, we observed more rapid completion of endochondral and intramembranous ossification, which was accompanied by altered expression of genes involved in bone remodeling and fracture callus mineralization. Although the expression level of several osteoblast differentiation genes was increased in the fracture calluses of high-dose irradiated rats, the callus formation and fracture union were delayed compared with the control and low-dose irradiated fractures. These results reveal beneficial effects of low-dose irradiation, including the stimulation of osteoblast proliferation, differentiation and fracture healing, and highlight its potential translational application in novel therapies against bone-related diseases.  相似文献   

2.
It is commonly accepted that silicon-doped hydroxyapatite (HAp) can achieve good repair effects for both spinal fusion and bone defect filling. However, the underlying mechanism by which silicon aids such beneficial effects is still not fully understood. Herein, we report on silicon-doped hydroxyapatites with excellent biocompatibility to osteoblast cells and suggest the signaling pathway involved. Non-doped HAp and trace Si-doped HAp (Si/HAp) with Si concentration close to and higher than natural bones were synthesized (i.e., 32, 260, and 2000 ppm Si). The composition, crystal lattice vibration pattern, and morphology of these samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and SEM, respectively. Positive biological activities of these Si-doped HAp materials were demonstrated through a cytotoxicity study and with the MTT and alkaline phosphatase (ALP) activity assays. The Si-doped samples were not toxic to MC3T3-E1 cells. Indeed, osteoblast proliferation measurement illustrated that 2000 ppm Si-doped HAp increased osteoblast proliferation by about 1.6 times compared to non-doped HAp. The ALP assay also proves that the trace Si doping has the function to enhance cell proliferation and differentiation. The ALP assay showed that Si doping also enhanced cell differentiation. QRT-PCR results revealed that Si-doped HAp enhanced osteogenic differentiation of osteoblast cells by upregulating genes such as MAPK3, Fzd1, Wnt1, Lrp6, and BMP2. In conclusion, Si-doped HAp promotes osteoblast proliferation and differentiation by activating the Wnt/β-catenin and MAPK signaling pathways. This work could provide useful information of the beneficial effects of silicon in human bones and provide clues as to the molecular mechanism of the promotive effect of Si-doped HAp biomaterials.  相似文献   

3.
4.
5.
6.
The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandamide or 2-arachidonoylglycerol for between 1 and 21 days. Cell proliferation (DNA content) and differentiation (alkaline phosphatase (ALP), collagen and osteocalcin secretion and calcium deposition) were measured. Anandamide and 2-arachidonoylglycerol significantly decreased osteoblast proliferation after 4 days, associated with a concentration-dependent increase in ALP. Inhibition of endocannabinoid degradation enzymes to increase endocannabinoid tone resulted in similar increases in ALP production. 2-arachidonoylglycerol also decreased osteocalcin secretion. After prolonged (21 day) treatment with 2-arachidonoylglycerol, there was a decrease in collagen content, but no change in calcium deposition. Anandamide did not affect collagen or osteocalcin, but reduced calcium deposition. Anandamide increased levels of phosphorylated CREB, ERK 1/2 and JNK, while 2-arachidonoylglycerol increased phosphorylated CREB and Akt. RT-PCR demonstrated the expression of CB2 and TRPV1, but not CB1 in HOBs. Anandamide-induced changes in HOB differentiation were CB1 and CB2-independent and partially reduced by TRPV1 antagonism, and reduced by inhibition of ERK 1/2 and JNK. Our results have demonstrated a clear involvement of anandamide and 2-arachidonoylglycerol in modulating the activity of human osteoblasts, with anandamide increasing early cell differentiation and 2-AG increasing early, but decreasing late osteoblast-specific markers of differentiation.  相似文献   

7.
构建表达成骨相关转录因子Osx的腺病毒,观察Osx对原代培养的小鼠成骨细胞增殖与分化的调控作用。将Osx编码基因克隆入腺病毒载体pAdEasy中,经293A包装后得到重组腺病毒,感染原代培养的小鼠颅骨细胞,茜素红染色观察矿化程度,实时定量RT-PCR检测成骨相关标志基因的转录水平,流式细胞检测细胞周期的改变。结果发现,①得到的病毒滴度为2×109PFU/ml,最佳感染复数为50;②表达Osx并不能够促进成骨细胞的矿化;③定量RT-PCR表明表达Osx 1d、3d、6d后成骨分化标志骨钙素、骨涎蛋白、Ⅰ型胶原蛋白的表达量明显上调(p<0.01);④流式细胞仪的结果表明Osx能够促进成骨细胞的增殖(p<0.01)。通过腺病毒在原代培养的成骨细胞中表达Osx能够促进成骨细胞的增殖,并对其分化具有一定的调控作用,为Osx在各种骨损伤的基因治疗应用方面提供了基础。  相似文献   

8.
目的:研究脂质体介导血管内皮生长因子(VEGF)基因对成骨细胞增殖、合成骨钙素以及细胞周期的影响。方法:通过脂质体介导的基因转染方法,将携带外源性VEGF重组pcDNA3-hVEGF质粒导入体外培养的成骨细胞,酶联免疫吸附测定法(ELISA)检测转染后细胞中VEGF浓度变化,以判断转染效果;采用细胞计数法检测转染重组质粒的成骨细胞的增殖活性;流式细胞术检测转染重组质粒的成骨细胞周期的变化;ELISA检测转染重组质粒的成骨细胞骨钙素浓度变化。结果:与对照组相比,转染组成骨细胞中VEGF的浓度显著增加,与对照组间差异具有统计学意义(P0.05);转染重组质粒的成骨细胞的增殖能力较对照组显著增强,差异具有统计学意义(P0.05),与对照组相比,转染重组质粒的成骨细胞周期(G2/M+S)%明显增加,差异具有统计学意义(P0.05);转染重组质粒的成骨细胞合成的骨钙素浓度较对照组显著升高,差异具有统计学意义(P0.05)。结论:脂质体介导成骨细胞增加血管内皮生长因子的水平,可促进成骨细胞增殖,增加成骨细胞骨钙素的浓度,从而提高成骨细胞的功能。  相似文献   

9.
10.
为研究不同强度脉冲电磁场(pulse electromagnetic fields,PEMFs)对大鼠颅骨成骨细胞(rat skull osteoblasts,OB)增殖及成熟矿化的影响,将大鼠颅骨成骨细胞随机分为 7 组. 检测大鼠颅骨成骨细胞的增殖,细胞内碱性磷酸酶(ALP)活性变化,细胞沉积钙盐的情况,组织化学染色以及成骨细胞内标志性分子表达量的改变.结果显示,0.6 mT组促细胞增殖作用最强(P <0.01);0.6 mT、1.8 mT、3.0 mT和3.6 mT均能提高ALP活性,其中0.6 mT ALP活性最高(P<0.01);在磁场处理4 ~12 d时细胞沉积钙盐逐渐增加,6种强度的脉冲电磁场均能促进钙盐沉积,尤以0.6 mT水平最高; ALP 染色、茜素红染色0.6 mT 组均显著高于对照组(P<0.01);0.6 mT组 Bmp-2和Collagen-1 mRNA 的表达明显(P<0.01)高于对照组,磁场处理组Rankl mRNA 的表达均比对照组低. 0.6 mT 50 Hz 脉冲电磁场是促进成骨细胞增殖和矿化成熟的最佳参数,这为采用脉冲电磁场治疗骨质疏松症提供了治疗参数的基础支持.  相似文献   

11.
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against β-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-eis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-β/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGFβ/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-β/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells.  相似文献   

12.
Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.  相似文献   

13.
Differences in the concentration and retention of 137Cs by unicellular diatoms, filamentous green algae, and filamentous blue-green algae were demonstrated under both batch and continuous-flow culture conditions. 137Cs concentration factors were generally higher by a factor of 2 in batch tests than in continuous flow tests. In retention studies, 137Cs was desorbed more rapidly from algae under continuous-flow conditions. Studies with blue-green algae indicate that 137Cs concentrations in the various species were more closely related to the surface-to-volume ratios of algal cells than to the systematic relationships of the three species. Continuous-flow studies indicated no differences among three species of filamentous green algae in the concentration of 137Cs, 65Zn, and 85Sr. However, the average concentration factors of the radionuclides were considerably different: 3800 for 65Zn, 460 for 137Cs, and 230 for 85Sr. These radionuclides were rapidly desorbed following the transfer of algae to nonradioactive media. The desorption rate was inversely related to the concentration rate.  相似文献   

14.
Trace elements are essential for normal brain functions. Tiny amounts of these elements help in the formation of neurotransmitters and involved in the antioxidant defense and intracellular redox regulation and modulation of neural cells. Vincamine is a plant alkaloid used clinically as a peripheral vasodilator that increases cerebral blood flow and oxygen and glucose utilization by neural tissue to combat the effect of aging. Neurodegenerative diseases associated with aging characterized by a disturbance in trace element levels in the brain. The objective of this study was to determine the level of zinc (Zn), copper (Cu), iron (Fe), Selenium (Se), and chromium (Cr) in the brain of rats treated with vincamine. Vincamine was injected i.m. to rats at a dose of 15 mg/Kg bodyweight daily for 14 days. Twenty-four hours after the last injection, rats were killed, and brains were ashed and digested by concentrated acids and analyzed for trace elements concentrations by flame emission atomic absorption spectrophotometer. The results showed that Zn was the highest trace element in the brain of control rats (3.134?±?0.072 ppm) and Cr was the lowest (0.386?±?0.027 ppm). Vincamine administration significantly (p?<?0.01) reduced the brain Fe concentration (1.393?±?0.165 ppm) compared to control (2.807?±?0.165 ppm). It was concluded that Zn was the highest trace element in the brain of rats. Vincamine administration resulted in approximately 50% reduction in brain Fe concentration which suggests its beneficial effect to prevent the oxidative stress of Fe in neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s diseases.  相似文献   

15.
We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00–11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1); the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2); and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3). Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45(p.p.b.), patients (group 2) 45.77±13.65, and patients (Salbutamol spray; group 3) 29 ±8.51 (P <0.02). In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03(p.p.b.), patients (group 2) 12.2 ± 3.56, and patients (Salbutamol spray; group 3) 20.6 ±10.01 (P < 0.01). It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs.  相似文献   

16.
We have generated F9 murine embryonal carcinoma cells in which either the retinoid X receptor (RXR)α and retinoic acid receptor (RAR)α genes or the RXRα and RARγ genes are knocked out, and compared their phenotypes with those of wild-type (WT), RXRα−/−, RARα−/−, and RARγ−/− cells. RXRα−/−/ RARα−/− cells were resistant to retinoic acid treatment for the induction of primitive and parietal endodermal differentiation, as well as for antiproliferative and apoptotic responses, whereas they could differentiate into visceral endodermlike cells, as previously observed for RXRα−/− cells. In contrast, RXRα−/−/RARγ−/− cells were defective for all three types of differentiation, as well as antiproliferative and apoptotic responses, indicating that RXRα and RARγ represent an essential receptor pair for these responses. Taken together with results obtained by treatment of WT and mutant F9 cells with RAR isotype– and panRXR-selective retinoids, our observations support the conclusion that RXR/ RAR heterodimers are the functional units mediating the retinoid signal in vivo. Our results also indicate that the various heterodimers can exert both specific and redundant functions in differentiation, proliferation, and apoptosis. We also show that the functional redundancy exhibited between RXR isotypes and between RAR isotypes in cellular processes can be artifactually generated by gene knockouts. The present approach for multiple gene targeting should allow inactivation of any set of genes in a given cell.  相似文献   

17.
The proliferative capacity of lymphocytes from peripheral blood of bovine with chronic lymphocytic leukemia (CLL) in vitro was investigated. We have shown earlier that CLL cells spontaneously proliferate in serum-free medium in the absence of added growth factors and mitogenic stimulation; autocrine growth factors provide the growth-initiating signal for CLL cells. The results of the present study showed that bovine serum albumin or fetal calf serum greatly enhanced the number of CLL cells incorporating [3H]thymidine. Although some CLL cells proceeded through more than one cell cycle, proliferation of CLL cells in culture was temporary. On the other hand, it was shown that CLL cells differentiated spontaneously in culture. This differentiation was characterized by the appearance of plasmacytoid cells possessing cytoplasmic immunoglobulins that coincided with the cessation of cell proliferation. Moreover, together with spontaneous proliferation and differentiation, the phenomenon of programmed cell death (apoptosis) was found, as was evidenced by the appearance of apoptotic bodies as well as DNA fragmentation. The findings indicate that the loss of proliferative potential of CLL cells in culture may be a consequence of their differentiation and/or apoptosis in vitro. CLL cells, with an autotrine growth mechanism, spontaneous differentiation, and apoptosis in vitro, provide a new model system for studies of the relationship between cellular proto-oncogene expression and inhibition of growth and/or induction of differentiation.  相似文献   

18.
19.
Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2''-deoxyuridine (BrdU) labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 µm per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH) treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states.  相似文献   

20.
We studied the effect of myofibrils on proliferation and differentiation of myoblasts cocultured with macrophages as well as the effect of incubation of macrophages with myofibrils on the expression by macrophages of the compounds that are cytokines for muscle cells. In the cocultures, macrophages stimulated the proliferation of myoblasts. Myofibrils greatly enhanced the stimulating effect of macrophages, whereas lipopolysaccharide (LPS) completely abolished it. The culture medium conditioned by macrophages activated the proliferation of myoblasts that were incubated with myofibrils but inhibited it when myoblasts were incubated with LPS. Possibly, myofibrils and their constituent proteins activate macrophages in an alternative pathway, enriching the population with M2-type macrophages.Z  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号