首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Axin is a critical component of the β-catenin destruction complex and is also necessary for Wnt signaling initiation at the level of co-receptor activation. Axin contains an RGS domain, which is similar to that of proteins that accelerate the GTPase activity of heterotrimeric Gα/Gna proteins and thereby limit the duration of active G-protein signaling. Although G-proteins are increasingly recognized as essential components of Wnt signaling, it has been unclear whether this domain of Axin might function in G-protein regulation. This study was performed to test the hypothesis that Axin RGS-Gna interactions would be required to attenuate Wnt signaling. We tested these ideas using an axin1 genetic mutant (masterblind) and antisense oligo knockdowns in developing zebrafish and Xenopus embryos. We generated a point mutation that is predicted to reduce Axin-Gna interaction and tested for the ability of the mutant forms to rescue Axin loss-of-function function. This Axin point mutation was deficient in binding to Gna proteins in vitro, and was unable to relocalize to the plasma membrane upon Gna overexpression. We found that the Axin point mutant construct failed to rescue normal anteroposterior neural patterning in masterblind mutant zebrafish, suggesting a requirement for G-protein interactions in this context. We also found that the same mutant was able to rescue deficiencies in maternal axin1 loss-of-function in Xenopus. These data suggest that maternal and zygotic Wnt signaling may differ in the extent of Axin regulation of G-protein signaling. We further report that expression of a membrane-localized Axin construct is sufficient to inhibit Wnt/β-catenin signaling and to promote Axin protein turnover.  相似文献   

2.
3.
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.  相似文献   

4.
5.
6.
7.
8.
9.
Effects of rat Axin domains on axis formation in Xenopus embryos   总被引:1,自引:0,他引:1  
Wnt signaling plays an important role in axis formation in early vertebrate development. Axin is one Wnt signaling regulator that inhibits this pathway. The effects of the injection of mRNA of several rat Axin (rAxin) mutants on axis formation in Xenopus embryos were examined. It was found that rAxin mutants containing only a regulation of G-protein signaling (RGS) domain fragment or with deletion of the RGS domain induced axis formation. Because the RGS domain is a major adenomatous polyposis coli gene product (APC)-binding domain, APC association with glycogen synthase kinase 3beta (GSK3beta) on the Axin molecule may be important in inhibition of axis formation. The ventralizing activities of wild-type rAxin and a mutant in which the Dishevelled and Axin (DIX) domain was deleted (deltaDIX mutant) were examined. Histological examination and gene expression revealed that the ventralizing activity of the deltaDIX mutant was weaker than that of wild-type rAxin. This finding suggests that the C-terminus of rAxin contributes to the inhibition of Wnt signaling in Xenopus embryos. Furthermore, an rAxin mutant that contained both the RGS and GSK3beta-binding domains affected both the dorsal and ventral sides of blastomeres, mediated ectodermal fate and induced expansion of notochord and/or endoderm, but did not induce axis formation.  相似文献   

10.
Modulation of Wnt signaling by Axin and Axil   总被引:7,自引:0,他引:7  
The Wnt signaling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic β-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin and its homolog Axil, newly recognized as components of the Wnt signaling pathway, negatively regulate this pathway. Other components of the Wnt signaling pathway, including Dvl, glycogen synthase kinase-3β (GSK-3β), β-catenin, and adenomatous polyposis coli (APC), interact with Axin, and the phosphorylation and stability of β-catenin are regulated in the Axin complex. Axil has similar functions to Axin. Thus, Axin and Axil act as scaffold proteins in the Wnt signaling pathway, thereby modulating the Wnt-dependent cellular functions.  相似文献   

11.
The AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is a member of most frequently activated proliferation and survival signaling pathway in cancer. Recently, hyperactivation of AKT1, due to functional point mutation in the pleckstrin homology (PH) domain of AKT1 gene, has been found to be associated with human colorectal, breast and ovarian cancer. Thus, considering its crucial role in cellular signaling pathway, a functional analysis of missense mutations of AKT1 gene was undertaken in this study. Twenty nine nsSNPs (non-synonymous single nucleotide polymorphism) within coding region of AKT1 gene were selected for our investigation and six SNPs were found to be deleterious by combinatorial predictions of various computational tools. RMSD values were calculated for the mutant models which predicted four substitutions (E17K, E319G, D32E and A255T) to be highly deleterious. The insight of the structural attribute was gained through analysis of, secondary structures, solvent accessibility and intermolecular hydrogen bond analysis which confirmed one missense mutation (E17K) to be highly deleterious nsSNPs. In conclusion, the investigated gene AKT1 has twenty nine SNPs in the coding region and through progressive analysis using different bioinformatics tools one highly deleterious SNP with rs121434592 was profiled. Thus, results of this study can pave a new platform to sort nsSNPs for several important regulatory genes that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case control studies.  相似文献   

12.
13.
Luo W  Lin SC 《Neuro-Signals》2004,13(3):99-113
Axin was originally identified from the characterization of the Fused locus, the disruption of which leads to duplication of axis and embryonic lethality. It is a multidomain protein that interacts with multiple proteins and functions as a negative regulator of Wnt signaling by downregulating the beta-catenin levels. Recently, it was demonstrated that Axin also plays an important role in a JNK signaling pathway. Axin utilizes discriminatory domains for its distinct roles in the Wnt pathway and in the Axin/JNK pathway. Here we review the data that show how Axin regulates multiple signaling pathways by serving as a scaffold protein, controlling diverse cellular functions in proliferation, fate determination, and suppression of tumorigenesis.  相似文献   

14.
The role of Axin2 in calvarial morphogenesis and craniosynostosis   总被引:8,自引:0,他引:8  
Axin1 and its homolog Axin2/conductin/Axil are negative regulators of the canonical Wnt pathway that suppress signal transduction by promoting degradation of beta-catenin. Mice with deletion of Axin1 exhibit defects in axis determination and brain patterning during early embryonic development. We show that Axin2 is expressed in the osteogenic fronts and periosteum of developing sutures during skull morphogenesis. Targeted disruption of Axin2 in mice induces malformations of skull structures, a phenotype resembling craniosynostosis in humans. In the mutants, premature fusion of cranial sutures occurs at early postnatal stages. To elucidate the mechanism of craniosynostosis, we studied intramembranous ossification in Axin2-null mice. The calvarial osteoblast development is significantly affected by the Axin2 mutation. The Axin2 mutant displays enhanced expansion of osteoprogenitors, accelerated ossification, stimulated expression of osteogenic markers and increases in mineralization. Inactivation of Axin2 promotes osteoblast proliferation and differentiation in vivo and in vitro. Furthermore, as the mammalian skull is formed from cranial skeletogenic mesenchyme, which is derived from mesoderm and neural crest, our data argue for a region-specific effect of Axin2 on neural crest dependent skeletogenesis. The craniofacial anomalies caused by the Axin2 mutation are mediated through activation of beta-catenin signaling, suggesting a novel role for the Wnt pathway in skull morphogenesis.  相似文献   

15.
Ablations of the Axin family genes demonstrated that they modulate Wnt signaling in key processes of mammalian development. The ubiquitously expressed Axin1 plays an important role in formation of the embryonic neural axis, while Axin2 is essential for craniofacial skeletogenesis. Although Axin2 is also highly expressed during early neural development, including the neural tube and neural crest, it is not essential for these processes, apparently due to functional redundancy with Axin1. To further investigate the role of Wnt signaling during early neural development, and its potential regulation by Axins, we developed a mouse model for conditional gene activation in the Axin2-expressing domains. We show that gene expression can be successfully targeted to the Axin2-expressing cells in a spatially and temporally specific fashion. High levels of Axin in this domain induce a region-specific effect on the patterning of neural tube. In the mutant embryos, only the development of midbrain is severely impaired even though the transgene is expressed throughout the neural tube. Axin apparently regulates beta-catenin in coordinating cell cycle progression, cell adhesion and survival of neuroepithelial precursors during development of ventricles. Our data support the conclusion that the development of embryonic neural axis is highly sensitive to the level of Wnt signaling.  相似文献   

16.
Interactions between the Wnt/beta-catenin and the extracellular signal-regulated kinase (ERK) pathways have been posited, but the molecular mechanisms and cooperative roles of such interaction in carcinogenesis are poorly understood. In the present study, the Raf-1, MEK, and ERK activities were concomitantly decreased in fibroblasts, which inhibit morphological transformation and proliferation by Axin induction. The inhibition of the components of the ERK pathway by Axin occurred in cells retaining wild-type beta-catenin, including primary hepatocytes, but not in cells retaining non-degradable mutant beta-catenin. Axin inhibits cellular proliferation and ERK pathway activation induced by either epidermal growth factor or Ras, indicating a role of Axin in the regulation of growth induced by ERK pathway activation. ERK pathway regulation by Axin occurs at least partly via reduction of the protein level of Ras. Both wild-type and mutant Ras proteins are subjected to regulation by Axin, which occurs in cells retaining wild-type but not mutant beta-catenin gene. The role of beta-catenin in the regulation of the Ras-ERK pathway was further confirmed by Ras reduction and subsequent inhibitions of the ERK pathway components by knock down of mutated form of beta-catenin. The Ras regulation by Axin was blocked by treatment of leupeptin, an inhibitor of the lysosomal protein degradation machinery. Overall, Axin inhibits proliferation of cells at least partly by reduction of Ras protein level via beta-catenin. This study provides evidences for the role of the Ras-ERK pathway in carcinogenesis caused by mutations of the Wnt/beta-catenin pathway components.  相似文献   

17.
Nodal activity in the left lateral plate mesoderm (LPM) is required to activate left-sided Nodal signaling in the epithalamic region of the zebrafish forebrain. Epithalamic Nodal signaling subsequently determines the laterality of neuroanatomical asymmetries. We show that overactivation of Wnt/Axin1/beta-catenin signaling during late gastrulation leads to bilateral epithalamic expression of Nodal pathway genes independently of LPM Nodal signaling. This is consistent with a model whereby epithalamic Nodal signaling is normally bilaterally repressed, with Nodal signaling from the LPM unilaterally alleviating repression. We suggest that Wnt signaling regulates the establishment of the bilateral repression. We identify a second role for the Wnt pathway in the left/right regulation of LPM Nodal pathway gene expression, and finally, we show that at later stages Axin1 is required for the elaboration of concordant neuroanatomical asymmetries.  相似文献   

18.
《Cellular signalling》2014,26(8):1717-1724
The canonical Wnt signaling pathway plays critical roles during development and homeostasis. Dysregulation of this pathway can lead to many human diseases, including cancers. A key process in this pathway consists of regulation of β-catenin concentration through an Axin-recruited destruction complex. Previous studies have demonstrated a role for tankyrase (TNKS), a protein with poly(ADP-ribose) polymerase, in the regulation of Axin levels in human cells. However, the role of TNKS in development is still unclear. Here, we have generated a Drosophila tankyrase (DTNKS) mutant and provided compelling evidence that DTNKS is involved in the degradation of Drosophila Axin (Daxin). We show that Daxin physically interacts with DTNKS, and its protein levels are elevated in the absence of DTNKS in the eye discs. In S2 cells, DTNKS suppressed the levels of Daxin. Surprisingly, we found that Daxin in turn down-regulated DTNKS protein level. In vivo study showed that DTNKS regulated Wg signaling and wing patterning at a high Daxin protein level, but not at a normal level. Taken together, our findings identified a conserved role of DTNKS in regulating Daxin levels, and thereby Wg/Wnt signaling during development.  相似文献   

19.
The ins and outs of Wingless signaling   总被引:11,自引:0,他引:11  
Signaling through the highly conserved Wingless/Wnt pathway plays a crucial role in a diverse array of developmental processes, many of which depend upon the precise regulation of Wingless/Wnt signaling levels. Recent evidence has indicated that the intracellular trafficking of Wingless/Wnt signaling components can result in significant changes in the level of signaling. Here, we examine three mechanisms through which intracellular trafficking might regulate Wingless signaling--the degradation of Wingless, its transport and the transduction of its signal. The intracellular trafficking of several Wingless/Wnt signaling components, including LRP5, LRP6, Dishevelled and Axin, as well as the functional implications of protein localization on Wingless/Wnt signaling, will be discussed.  相似文献   

20.
Misregulation of Wnt signaling is at the root of many diseases, most notably colorectal cancer, and although we understand the activation of the pathway, we have a very poor understanding of the circumstances under which Wnt signaling turns itself off. There are numerous negative feedback regulators of Wnt signaling, but two stand out as constitutive and obligate Wnt-induced regulators: Axin2 and Nkd1. Whereas Axin2 behaves similarly to Axin in the destruction complex, Nkd1 is more enigmatic. Here we use zebrafish blastula cells that are responsive Wnt signaling to demonstrate that Nkd1 activity is specifically dependent on Wnt ligand activation of the receptor. Furthermore, our results support the hypothesis that Nkd1 is recruited to the Wnt signalosome with Dvl2, where it becomes activated to move into the cytoplasm to interact with β-catenin, inhibiting its nuclear accumulation. Comparison of these results with Nkd function in Drosophila generates a unified and conserved model for the role of this negative feedback regulator in the modulation of Wnt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号