首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.  相似文献   

2.
The glycogen content in fresh raw dog spermatozoa was 0.22+/-0.03 micromol/mg protein. This matched with the presence of a glycogen-like staining in the head and midpiece. Glycogen levels lowered to 0.05 micromol/mg protein after incubation for 60 min without sugars. Addition of either 10 mM fructose or 10 mM glucose increased glycogen content to 0.70 micromol/mg protein. On the other hand, glycogen synthase activity ratio of fresh dog sperm (0.35+/-0.07, measured in the absence and the presence of glucose 6-P) increased to 0.55 with 10 mM fructose for 20 min, whereas glucose had a smaller effect. Spermatozoa extracts had also a protein of about 100 Kd, which reacted against a rat liver glycogen synthase antibody. This was located in sperm head and midpiece. Furthermore, glycogen phosphorylase activity ratio measured in presence and absence of AMP (0.25+/-0.03 in fresh samples) decreased to 0.15 by 10 mM glucose for 20 min, whereas fructose was less potent in this regard. The maximal effect of glucose and fructose were observed from 10-20 mM onwards. This work is the first indication for a functional glycogen metabolism in mammal spermatozoa, which could play an important role in regulating sperm survival in vivo.  相似文献   

3.
Isolated liver cells from 24 h starved rats were incubated in Krebs-Ringer buffer containing 4% albumin. In the presence of 10, 20 and 30 mM glucose, addition of insulin stimulated net glycogen production by 52, 39 and 20%, respectively. 2 . 10(-9) M insulin was required for half-maximal stimulation. Increases of glycogen production and of glycogen synthase a activity were observed after 15-30 min of incubation with insulin. The stimulatory effect of insulin was additive to that of lithium. In agreement with the literature, insulin antagonized the inhibitory action of suboptimal doses of glucagon on glycogen deposition whereby a decrease of glucagon-elevated cyclic AMP levels was observed. In addition, we found that insulin also decreased the basal cyclic AMP levels in the absence of added glucagon by 22%. It is concluded that physiological concentrations of insulin stimulate net glycogen deposition in hepatocytes from fasted rats; the decrease of basal cyclic AMP levels upon insulin addition may play a role in the mechanism of the hormone action.  相似文献   

4.
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.  相似文献   

5.
Two interconvertible forms of glycogen synthase and glycogen phosphorylase, one active (a) or the other less active (b), were predominantly present in a thermosensitive adenylate-cyclase-deficient mutant that had been preincubated at the restrictive temperature of 35 degrees C, either in the presence or in the absence of glucose. Glycogen phosphorylase was at least 20-fold less active after incubation of the cells in the presence of glucose, but this residual activity had kinetic properties identical to those of the active form of enzyme, obtained after incubation in the absence of glucose; this suggests that the b form might be completely inactive and that the low activity measured after glucose treatment must be attributed to a residual amount of phosphorylase a. By contrast, the kinetic properties of the two forms of glycogen synthase were very different. When measured in the absence of glucose 6-phosphate, the two forms of enzyme had a similar affinity for UDP-Glc but differed essentially by their Vmax. Glucose 6-phosphate had no effect on synthase a, but increased both Vmax and Km of synthase b; these effects, however, were in great part counteracted by sulfate and by inorganic phosphate, the latter also having the property of increasing the Km of the a form, without affecting Vmax. It was estimated that at physiological concentrations of substrates and effectors, synthase a was about 20-fold more active than synthase b. When an extract of cells that had been preincubated in the absence of glucose was gel-filtered and then incubated at 30 degrees C, phosphorylase was progressively fully inactivated and synthase was partially activated; these reactions were severalfold faster and, in the case of glycogen synthase, more complete in the presence of 10 mM glucose 6-phosphate. When a gel-filtered extract of cells that had been preincubated in the presence of glucose was incubated at 30 degrees C in the presence of ATP-Mg and EGTA, phosphorylase became activated and synthase was inactivated; the first of these two reactions was severalfold stimulated by micromolar concentrations of Ca2+, whereas both reactions were completely inhibited by 10 mM glucose 6-phosphate and only slightly and irregularly stimulated by cyclic AMP.  相似文献   

6.
One hundred Ancylostoma caninum, in groups of 10 in a special apparatus, were offered dog blood and serum, NaCl, Krebs-Ringer bicarbonate, polyvinylpyrrolidone, intestinal epithelial extracts, heated serum, and dialyzed and nondialyzed fractions of serum. The worms' rate of suction was measured. They sucked actively only in blood, serum, and nondialyzed fraction of serum. These findings suggest that dog serum contains one or more macromolecules which stimulate the worm to suck actively.  相似文献   

7.
The incorporation of glucose into glycogen was determined in pancreatic islets isolated from normal rats and incubated with glucose (5 or 20 mM) and compounds known to affect glycogen metabolism in other tissues. Incubation of pancreatic islets with glucose (20 mM) induced a marked increase in radioactive glycogen. Exposure to epinephrine in the presence of glucose (20 mM) slightly increased incorporation of glucose into glycogen. In contrast the incorporation of glucose into glycogen was not affected when isolated islets were exposed to glucagon or insulin, whereas anti-insulin serum in the incubation medium decreased radioactive glycogen formation.  相似文献   

8.
The effect of maintenance in vitro on glucose uptake and the incorporation of glucose into glycogen by adult Schistosoma mansoni. International Journal for Parasitology16: 253–261. Adult male Schistosoma mansoni rapidly depleted their glycogen reserves in vitro. Both sexes also exhibited a gradual reduction in glycogen content during prolonged maintenance. Paired and separated worms were incubated in [3H] glucose and rates of glucose uptake and incorporation into glycogen were determined following periods of maintenance in vitro. The glucose uptake rate declined during long-term maintenance and was higher for separated males and females than for equivalent paired worms. Increasing the medium glucose concentration also increased the rate of uptake. Glucose continued to be incorporated into glycogen throughout 10 days in vitro, with evidence from paired schistosomes suggesting that the rapid depletion of male glycogen could be due to a decrease in incorporation rate in vitro. The incubation of separated worms and the use of higher glucose concentrations in media both effected an increase in incorporation rate. These results are discussed in the light of observations of the depletion of schistosome glycogen in vitro.  相似文献   

9.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

10.
Rat hemidiaphragms were loaded with [U-14C] glucose at 2°C and subsequently incubated at 37°C with non-labeled glucose or [14C] glucose in the presence or absence of insulin. The incorporation of isotope into glycogen and lactate was determined. The results showed that insulin markedly stimulated the synthesis of glycogen from extracellular glucose while it had no effect on incorporation of isotope into glycogen from intracellular glucose. Lactate formation was not influenced by insulin. It was concluded that glucose transport in muscle is linked to glycogen sythesis and that insulin preferentially directs glucose entering the cell toward the formation of glycogen.  相似文献   

11.
In order to study the role of cyclic AMP in the inhibition by somatostatin of glucose-induced insulin release, the effect of somatostatin on the potentiation by dibutyryl-cyclic AMP (db-cAMP) of insulin release from isolated pancreatic islets of rats was examined. Isolated islets were obtained from the rat pancreas by the collagenase method. Ten islets were incubated for periods of 30 min in Krebs-Ringer bicarbonate buffer containg albumin and glucose 2.0 mg/ml in the presence or absence of somatostatin (1 microgram/ml or 100 ng/ml) and/or db-cAMP 1 mM. Glucose-induced insulin release was reduced by somatostatin in concentrations of 1 microgram/ml. Somatostatin in a concentration of 100 ng/ml significantly abolished the potentiation by db-cAMP of insulin release (p less than 0;01), in spite of exerting no inhibition of glucose-induced insulin release. However, in the presence of theophylline 5 mM, somatostatin 100 ng/ml did not show that inhibitory effect on the potentiated insulin release.  相似文献   

12.
Rat adrenocortical cell suspensions (10(6) cells) were incubated with ACTH (40 nM) in 2 ml of Krebs-Ringer bicarbonate buffer for 90 min. About 42 nmol of corticosterone and 14 nmol of 18-hydroxydeoxycorticosterone were generated and released into the medium. Aminoglutethimide at 50 microM inhibited the steroidogenesis to 16%. Mitochondrial pellets were prepared from the cells incubated in the absence, or in the presence, of ACTH and aminoglutethimide, and cholesterol content was determined. The mitochondria of the cells incubated without the drugs contained 25.2 micrograms cholesterol/mg protein. Cholesterol content increased by 10% in the mitochondria of the ACTH-stimulated cells. The mitochondria of the cells incubated in the presence of both ACTH and aminoglutethimide contained 143% of cholesterol compared to those of the nontreated cells. When rats were subjected to ether stress after aminoglutethimide pretreatment, cholesterol content of the mitochondrial fraction increased to about 200% compared to that of the control rats. These results suggest that a cholesterol pool exists in the adrenocortical mitochondria and that the amount increases during the steroidogenic stimulation of the cells. The mitochondria were fixed with filipin-containing fixative and examined by freeze-fracture electron microscopy. Accumulations of filipin-cholesterol complexes were observed in the inner membrane of the mitochondria as protuberances or pits 25 nm in diameter.  相似文献   

13.
The effect of glucose concentration on the in vitro release of histamine (HA) was examined, using two different preparations of the mouse hypothalamus. The HA and tele-methylhistamine released from whole blocks of the hypothalamus into the medium linearly increased during 2-h incubation in normal Krebs-Ringer bicarbonate solution in the absence of external depolarizing stimuli. The release of HA from this preparation depended on the temperature and Ca2+ in the medium and was progressively increased with decrease in the glucose concentration from 11.5 to 1 mM. The rate of the HA release was dependent on the absolute concentration of glucose and not on an abrupt change in the concentration. When slices of the hypothalamus were incubated in high K+ medium, a temperature- and Ca2+-dependent HA release was observed. At low concentrations of glucose, the K+ (20 mM)-induced HA release from the hypothalamic slices was also enhanced. Tetrodotoxin (10 microM) inhibited the enhancing effect of a low glucose concentration (2 mM) on the HA release by 60%, in both preparations of the hypothalamus. The possibility that the release of HA from the mouse hypothalamus is regulated by glucose concentration and that activation of neuronal Na+ channels is involved in the enhancement of the HA release by low glucose concentrations warrants further attention.  相似文献   

14.
The influences of host feeding and the availability of glucose in vitro on the activities of glycogen synthase and glycogen phosphorylase in Hymenolepis diminuta and in Vampirolepis microstoma were studied. The worms were recovered from hosts that had been fed ad libitum, starved for 24 hr, or starved 24 hr and then refed for 1 hr immediately prior to worm recovery. The ratios of active to inactive glycogen synthase and phosphorylase were correlated with the host feeding regimen prior to recovery. Glycogen synthase in H. diminuta was predominately in the inactive D form in worms from both fed and fasted hosts. One hour after refeeding, up to 80% of the synthase was in the active I form. Phosphorylase in H. diminuta was predominantly in the active a form in worms from fed and fasted hosts, but activity of this enzyme was suppressed in worms from refed hosts. When H. diminuta from fasted hosts was incubated in a balanced salt solution containing 40 mM glucose, glycogen synthase I increased, and phosphorylase a decreased. Glycogen synthase in V. microstoma was predominantly in the inactive D form in worms from both the fed and fasted hosts, but the proportion in the active I form increased to over half the total synthase by 1 hr of host refeeding. The proportion of glycogen phosphorylase a was high in worms from fed hosts and decreased, but not dramatically, in worms from fasted hosts. The results suggested that the worms had access to another source of glucose, probably from the host bile, and we measured a low but significant concentration of carbohydrate in the gall bladder bile of mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.  相似文献   

16.
Glycogen consumption was investigated in isolated adult rat myocytes incubated for 2 h (37 degrees C) in substrate-free, hypoxic Krebs-Henseleit bicarbonate buffer. No consumption of glycogen occurred after 1 h of incubation, and the residual glycogen after 2 h was 23% despite an 89% reduction of the initial ATP content (from 27.1 +/- 1.8 to 3.1 +/- 0.5 nmol/mg dry weight, n = 12). The residual glycogen was not due to lactate inhibition of glycolytic enzymes, since myocytes incubated in the presence of 5 mM glucose maintained high energy phosphates throughout the incubation period despite a considerable lactate accumulation (1740 +/- 43 nmol/mg dry weight in glucose-supplemented vs. 138 +/- 14 nmol/mg dry weight in substrate-free incubations, n = 12). We have previously shown that the content of cyclic AMP in myocytes is not altered in response to hypoxia, thereby excluding activation of glycogen phosphorylase a. In the present study, the fall in myocyte ATP content was not followed by a rise in AMP, possibly preventing allosteric activation of glycogen phosphorylase b. However, addition of cyanide to the hypoxic incubations increased cellular AMP (initial level 2.1 +/- 0.4 nmol/mg dry weight vs. 9.8 +/- 0.7 after 30 min, n = 12) without increasing the amount of glycogen consumed, also ruling out the lack of glycogen phosphorylase b activation in the myocytes. Therefore, the glycogen rest was probably confined to the 17% of myocytes hypercontracted at the start of incubations.  相似文献   

17.
Plasma cells obtained from the peripheral blood of a patient with multiple myeloma was incubated in serum and Krebs-Ringer bicarbonate buffer with (14)C-labeled glucose, acetate, and propionate. Glucose utilization by these cells amounted to 0.5 mumole per hr per 10(8) cells and was mainly via the Embden-Meyerhof pathway, and only 6% or less traversed the hexose monophosphate shunt. The presence of Krebs cycle activity was demonstrated by direct isolation of several labeled intermediates after incubation with either (14)C-acetate or (14)C-propionate. The distribution of (14)C in lactate, succinate, fumarate, malate, aspartate, and glutamate indicate a complete Krebs cycle. Acetate was metabolized via the Krebs cycle to the extent of 0.15 mumoles per hr per 10(8) cells, and the rate of propionate utilization was 0.17 mumoles per hr per 10(8) cells.  相似文献   

18.
Effects of insulin on key steps of carbohydrate metabolism were investigated in cultured HT29 colon cancer cells by two different approaches, i.e. incubation of the cells either in the absence or in the presence of glucose in the medium. In glucose-deprived cells, insulin decreased glycogen breakdown, but did not affect polysaccharide levels when glucose was present. Glycogen synthase became activated after insulin treatment in both conditions, even though the activation was more evident when glucose was omitted. No effect on glycogen phosphorylase activity was evident under our experimental conditions. In cells incubated with glucose, the hormone stimulated in a dose-dependent manner the rates of glucose uptake and lactate release. Concomitantly with the increase in glycolytic rate, insulin caused a strong increase in fructose 2,6-bisphosphate. This effect was not observed in the absence of glucose. It is concluded that the carbohydrate metabolism of cultured HT29 cells responds to insulin, making this biological model suitable for investigations in vitro on the mechanism of insulin action.  相似文献   

19.
Alveolar macrophages can be stimulated by concanavalin A to produce extracellular superoxide. Conflicting opinions exist, however, concerning the relative importance of the oxidation of either NADPH or NADH in the generation of (Formula: see text) by surface membrane-stimulated phagocytic cells. Alveolar macrophages were obtained from adult male rats by lavage with phosphate-buffered saline. Cells (approximately 10(6)/ml) were incubated in Krebs-Ringer phosphate 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer and ferricytochrome c for 15 min at 37 degrees C before addition of concanavalin A. Release of (Formula: see text) was detected as the difference in cytochrome c reduction, followed at 550 nm, in the absence and presence of superoxide dismutase. Superoxide production by concanavalin A-stimulated alveolar macrophages was markedly increased in the presence of glucose but fructose, lactate, and pyruvate were without effect. Paraquat (methylviologen), an oxidation-reduction dye, significantly reduced concanavalin A-stimulated (Formula: see text) production when incubated at 1 mM with alveolar macrophages in the absence of glucose. The effect of paraquat was reversed by glucose, but fructose, lactate, and pyruvate could not reverse paraquat inhibition. Paraquat enhanced oxidation of NADPH (but not NADH) by cell supernatant and increased pentose phosphate shunt activity in resting macrophages, but did not affect mitochondrial respiration or ATP content of alveolar macrophages. These results suggest that paraquat is able to specifically deplete NADPH in alveolar macrophages while not affecting NADH or ATP. Our conclusion is that NADPH is essential for the production of (Formula: see text) by concanavalin A-stimulated alveolar macrophages.  相似文献   

20.
The amount of glucose consumed by chick embryo fibroblasts in primary culture is strongly influenced by the presence of bicarbonate ion in the culture medmum. Cells grown on glucose at physiologic concentration (5.5 mm) and in the absence of bicarbonate ion have a reduced rate of glucose utilization when compared to their counterparts cultivated in medium containing the usual 25 mM bicarbonate. The presence or absence of bicarbonate is without effect on chick embryo fibroblast proliferation over a 6-day growth period. Both lactic acid accumulation per mole of glucose consumed and the utilization of glutamine increase as a function of bicarbonate ion in the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号