首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Selenoprotein T (SelT) is associated with the regulation of calcium homeostasis and neuroendocrine secretion. SelT can also change cell adhesion and is involved in redox regulation and cell fixation. However, the structure and function of chicken SelT and its response to selenium (Se) remains unclear. In the present study, 150 1-day-old chickens were randomly divided into a low Se group (L group, fed a Se-deficient diet containing 0.020 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.2 mg/kg Se). The immune organs (spleen, thymus, and bursa of Fabricius) were collected at 15, 25, 35, 45, and 55 days of age. We performed a sequence analysis and predicted the structure and function of SelT. We also investigated the effects of Se deficiency on the expression of SelT, selenophosphate synthetase-1 (SPS1), and selenocysteine synthase (SecS) using RT-PCR and the oxidative stress in the chicken immune organs. The data showed that the coding sequence (CDS) and deduced amino acid sequence of SelT were highly similar to those of 17 other animals. Se deficiency induced lower (P?<?0.05) levels of SelT, SPS1, and SecS, reduced the catalase (CAT) activity, and increased the levels of hydrogen peroxide (H2O2) and hydroxyl radical (–OH) in immune organs. In conclusion, the CDS and deduced amino acid sequence of chicken SelT are highly homologous to those of various mammals. The redox function and response to the Se deficiency of chicken SelT may be conserved. A Se-deficient diet led to a decrease in SelT, SecS, and SPS1 and induced oxidative stress in the chicken immune organs. To our knowledge, this is the first report of predictions of chicken SelT structure and function. The present study demonstrated the relationship between the selenoprotein synthases (SPS1, SecS) and SelT expression in the chicken immune organs and further confirmed oxidative stress caused by Se deficiency. Thus, the information presented in this study is helpful to understand chicken SelT structure and function. Meanwhile, the present research also confirmed the negative effects of Se deficiency on chicken immune organs.  相似文献   

2.
Previous studies have determined the effects of dietary selenium (Se) supplementation on selenoprotein N (SelN, SEPN1), selenophosphate synthetase-1 (SPS1), and selenocysteine-synthase (SecS) mRNA abundance in chicken skeletal and cardiac muscles. To investigate collective responses of these genes to dietary Se concentrations ranging from deficiency to moderately high level in muscle tissues of chicken, 1-day-old chickens were exposed to a diet of deficient Se and supplemented with Se (0.15 mg Se/kg and 1.50 mg Se/kg) as sodium selenite in the feed for 35 days. Muscle tissues (flight, breast, leg, and cardiac muscles) were collected and examined for Se content and mRNA levels of SelN on days 1, 15, 25, and 35 days, respectively. Moreover, SPS1 and SecS mRNA levels were analyzed. The results showed that the expression of SelN gene in cardiac muscle responded to dietary Se concentrations. SelN gene was downregulated in the Se deficiency group (L group), and upregulated in the Se excess group (H group) compared with the moderate Se group (M group) (P?<?0.05) in cardiac muscle. Se deficiency mainly unregulated SelN mRNA level in skeletal muscles compared with M group. Excess dietary Se mainly resulted in the upregulation of SelN mRNA level in skeletal muscles compared with the M group. SecS mRNA levels responded to dietary Se concentrations showed a similar change compared with SelN in cardiac muscle. SPS1 mRNA levels responded to dietary Se concentrations showed a downregulation in L group and upregulation in H group. However, SelN mRNA levels displayed a different expression pattern in different skeletal and cardiac muscles. Moreover, Se also regulated the levels of SPS1 and SecS mRNAs. In summary, Se regulated the expression of SelN gene and affected the mRNA levels of SecS and SPS1. The level of Se in the feed may regulate SelN biosynthesis by affecting the levels of SPS1 and SecS mRNA.  相似文献   

3.
4.
Selenium (Se) is necessary for the immune system in chicken and mediates its physiological functions through selenoproteins. Heat shock proteins (Hsps) are indispensable for maintaining normal cell function and for directing the immune response. The aim of the present study was to investigate the effects of Se deficiency on the messenger ribonucleic acid (mRNA) expression levels of selenoproteins and Hsps as well as immune functions in the chicken bursa of Fabricius. Two groups of chickens, namely the control and Se-deficient (L group) groups, were reared for 55 days. The chickens were offered a basal diet, which contained 0.15 mg Se/kg in the diet fed to the control group and 0.033 mg Se/kg in the diet fed to the L group. We performed real-time quantitative polymerase chain reactionto detect the mRNA expression levels of selenoproteins and Hsps on days 15, 25, 35, 45 and 55. Western blotting was used to determine the protein expression levels of Hsps on days 35, 45 and 55, and immune functions were assessed through an enzyme-linked immunosorbent assay on days 15, 35, and 55. The data showed that the mRNA expression levels of selenoproteins, such as Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, GPx1, GPx2, GPx3 GPx4, Sepp1, Selo, Sel-15, Sepx1, Sels, Seli, Selu, Selh, and SPS2, were significantly lower (P < 0.05) in the L group compared with the control group. Additionally, the mRNA and protein expression levels of Hsps (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90) were also significantly higher (P < 0.05) in the L group. The expression levels of IL-2, IL-6, IL-8, IL-10, IL-17, IL-1β, IFN-α, IFN-β, and IFN-γ were significantly lower (P < 0.05) and TNF-α was significantly higher (P < 0.05) in the L group compared with the control group. Our results show that immunosuppression was accompanied by a downregulation of mRNA expression levels of selenoproteins and an upregulation of the Hsp mRNA expression levels. Thus, Se deficiency causes defects in the chicken bursa of Fabricius, and selenoproteins and Hsps play important roles in immunosuppression in the bursa of Fabricius of chickens with Se deficiency.  相似文献   

5.
6.
Selenium (Se) deficiency causes injury of diversified tissues and cells, including livers, hearts, skeletal muscles, and erythrocytes. The aim of the present study is to explore the molecular mechanism of erythrocyte hemolysis due to Se deficiency in broilers. One hundred and eighty broilers (male/female, 1 day old) were randomly divided into two groups and fed with either a normal Se content diet (C group, 0.2 mg Se/kg) or a Se-deficient diet (ED group, 0.008 mg Se/kg) for 45 days. During the trial period of 15–30 days, biological properties such as osmotic fragility, fluidity, phospholipid components of cell membrane, adenosine triphosphatase activities, and antioxidant function of erythrocytes in broilers were examined. Moreover, the messenger RNA (mRNA) expressions of genes associated with inflammation, glycometabolism, and avian uncoupling protein (avUCP) were detected. We found that compared with the C group, hemolysis rate, degree of polarization, and microviscosity of erythrocytes were increased in broilers of the ED group. The composition of erythrocyte membrane lipids was changed. Meanwhile, the antioxidant function of erythrocytes was weakened and mRNA levels of inflammatory genes were stimulated by Se deficiency (p < 0.05). In addition, mRNA expressions of rate-limiting enzymes in glycometabolism were effected and avUCP mRNA level was downregulated (p < 0.05) in the ED group. It has been concluded from the results that oxidative stress, inflammatory response, and glycometabolism disorder lead to erythrocyte hemolysis by changing the structure and function of erythrocyte membrane in ED broilers suffered from Se deficiency.  相似文献   

7.
Dietary selenium (Se) deficiency is known to cause myodynia syndrome and Se influences immune responses by changing the expression of inflammatory cytokines and heat shock proteins (Hsps), but the details are not completely elucidated. In the present study, 72 1-day-old mice were divided into two groups; the first group was fed a Se-sufficient diet, while the second group was fed a Se-deficient diet. Skeletal muscles and blood samples were taken from all mice after 42 days of treatment. The activities of glutathione peroxidase (GPX) and glutathione (GSH), mRNA and protein expression levels of inflammatory cytokines (including TNF-α, inducible NO synthase, cyclooxygenase-2, and prostaglandin E synthases), protein expression levels of NF-κB, and the mRNA expression levels of Hsps in the skeletal muscles of mice were examined. The results showed that GPX and GSH activities were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the mRNA levels of Hsps were increased by Se deficiency in mouse skeletal muscles. In the present study, the protective role of Se in oxidative stress, inflammatory cytokines, and Hsps in the skeletal muscles of mice was summarized.  相似文献   

8.
Zhang JL  Li JL  Huang XD  Bo S  Rihua W  Li S  Xu SW 《Biometals》2012,25(2):297-307
Selenium (Se), selenoprotein N (SelN) and selenoprotein W (SelW) play a crucial role in muscle disorders. Se status highly regulates selenoprotein mRNA levels. However, few attempts have been performed on the effect of dietary Se supplementation on muscle SelN and SelW mRNA levels in birds. To investigate the effects of Se on the regulation of SelN and SelW mRNA levels in muscle tissues, one-day-old male chickens were fed either a commercial diet or a Se-supplemented diet containing 1.0, 2.0, 3.0 or 5.0 mg/kg sodium selenite for 90 days. Muscle tissues (breast, flight, thigh, shank and cardiac muscles) were collected and examined for Se content and mRNA levels of SelN and SelW. Moreover, Selenophosphate synthetase-1 (SPS-1) and selenocysteine-synthase (SecS) mRNA levels were analyzed. Significant increases in SelN mRNA levels were obtained in breast, thigh and shank muscles treated with Se, with maximal effects at 3.0 mg Se/kg diet, but 2.0 mg Se/kg diet resulted in peak levels of Sel N mRNA in flight muscles. Changes in SelW mRNA abundance in thigh and shank muscles increased in response to Se supply. After reaching a maximal level, higher Se supplementation led to a reduction in both SelN and SelW mRNAs. However, SelN and SelW mRNA levels displayed a different expression pattern in different skeletal and cardiac muscles. Thus, it suggested that skeletal and cardiac muscles SelN and SelW mRNA levels were highly regulated by Se supplementation and different muscle tissues showed differential sensitivity. Moreover, Se supplementation also regulated the levels of SPS1 and SecS mRNAs. The mRNA levels of SPS1 and SecS were enhanced in the Se supplemented groups. These data indicate that Se regulates the expression of SelN and SelW gene and affect the mRNA levels of SecS and SPS1.  相似文献   

9.
The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.  相似文献   

10.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

11.
Selenoprotein W (SelW) is expressed in the immune systems of mammals. However, its pattern of expression in the immune organs of birds is still unclear. To investigate the distribution of SelW and effects of dietary Se levels on the SelW mRNA expression in the immune organs of birds, 1-day-old male chickens were fed either a commercial diet or an Se-supplemented diet containing 0.601, 1.058, 1.514, or 2.427?mg Se per kilogram, and 1.0, 2.0, 3.0 or 5.0?mg sodium selenite per kilogram for 90?days. The immune organs (spleen, thymus, and bursa of Fabricius) were collected and examined for Se content and SelW mRNA levels. The mRNA expression of SelW was detected in all the tissues. Although Se content was the highest in the spleen, the remarkable stability of the SelW mRNA level was observed in this organ during different times of dietary Se supplementation. Se-supplemented diet can make the SelW expression levels higher within a certain range in thymus and bursa of Fabricius. The present study demonstrates that SelW is widely expressed in immune organs of birds and that Se-supplementation of the feed increases SelW expression in the thymus and the bursa of Fabricius.  相似文献   

12.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

13.
Selenium (Se) is an essential trace element in many life forms due to its occurrence as selenocysteine (Sec) residue in selenoproteins. However, little is known about the expression pattern of selenoproteins in the liver of layer chicken. To investigate the effects of Se deficiency on the mRNA expressions of selenoproteins in the liver tissue of layer chickens, 1-day-old layer chickens were randomly allocated into two groups (n?=?120/group). The Se-deficient group (?Se) was fed a Se-deficient corn–soy basal diet; the Se-adequate group as control (+Se) was fed the same basal diet supplemented with Se at 0.15 mg/kg (sodium selenite). The liver tissue was collected and examined for mRNA levels of 21 selenoprotein genes at 15, 25, 35, 45, 55, and 65 days old. The data indicated that the mRNA expressions of Gpx1, Gpx2, Gpx3, Gpx4, Sepn1, Sepp1, Selo, Sepx1, Selu, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, SPS2, Selm, SelPb, Sep15, and Sels were decreased (p?<?0.05), but not the levels of Dio3 and Seli (p?>?0.05). The results showed that the mRNA levels of 19 selenoprotein (except Seli and Dio3) genes in the layer chicken liver were regulated by diet Se level. The present study provided some compensated data about the roles of Se in the regulation of selenoproteins.  相似文献   

14.
15.
The chicken immune system is immature at the time of hatching. The development of the respiratory immune system after hatching is vital to young chicks. The aim of this study was to investigate the effect of dietary vitamin A supplement levels on respiratory mucin and IgA production in chicks. In this study, 120 one-day-old broiler chicks were randomly divided into 4 groups consisting of three replicates of 10 broilers and subjected to dietary vitamin A supplement levels of 0, 1,500, 6,000, or 12,000 IU/kg for seven days. Compared with control birds, vitamin A supplementation significantly increased the mucin and IgA levels in the bronchoalveolar lavage fluid (BALF) as well as the IgA level in serum. In the lungs, vitamin A supplementation downregulated TNF-α and EGFR mRNA expression. The TGF-β and MUC5AC mRNA expression levels were upregulated by vitamin A supplementation at a dose of 6,000 IU/kg, and the IL-13 mRNA expression level was increased at the 12,000 IU/kg supplement level. Vitamin A deficiency (control) significantly decreased the mRNA expression levels of MUC2, IgA, EGFR, IL-13 and TGF-β in trachea tissue. Histological section analysis revealed that the number of goblet cells in the tracheal epithelium was less in the 0 and 12,000 IU/kg vitamin A supplement groups than in the other groups. In conclusion, vitamin A deficiency suppressed the immunity of the airway by decreasing the IgA and mucin concentrations in neonatal chicks. This study suggested that a suitable level of vitamin A is essential for the secretion of IgA and mucin in the respiratory tract by regulating the gene expression of cytokines and epithelial growth factors.  相似文献   

16.

Background

Susceptibility or resistance to infection with Cryptosporidium parvum (C.parvum) correlates with Selenium (Se) deficiency in response to infection. Both adult Se-adequate and Se-deficient mouse models of cryptosporidiosis were used to study the cell-mediated immune response during the course of C. parvum infection.

Methodology/Principal Findings

Blood samples from mouse models were used for Se status. The concentration of MDA, SOD, GPx and CAT in blood has revealed that lower Se level exist in Se-deficient mice. Mesenteric lymph node (MLN) lymphocytes from both mouse models were proliferated after ex vivo re-stimulation with C. parvum sporozoite antigen. The study of the cytokine profiles from the supernatant of proliferated MLN cells revealed that Se-adequate mice produced higher levels of Th1 (IFN-γ and IL-2) and moderate amounts of Th2 (IL-4) cytokines throughout the course of infection. Whereas, MLN cells from Se-deficient mice produced lower levels of IFN-γ, IL-2 and IL-4 cytokines. The counts of total white cell and CD3, CD4, CD8 cell in Se-adequate were higher than that in Se-deficient mice.

Significance

These results suggest that Cell immunity is affected by Se status after infection with C.parvum from kinetic changes of different white cells and cytokine. In conclusion, induced susceptibility of host is associated with an impaired antioxidant system following infection with C.parvum in C57BL/6 Selenium deficient mice.  相似文献   

17.
This study describes the effects of selenium (Se) deficiency on the messenger ribonucleic acid (mRNA) expression of 25 selenoproteins (Sels) (including glutathione peroxidases (GPx1–GPx4), thioredoxin reductases (TrxR1–TrxR3), iodothyronine deiodinases (ID1–ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, Sepn1, SelO, Sepx, Selpb, SelS, SelT, SelW, Sepp1, and SelU in the adipose tissues (subcutaneous adipose, visceral adipose, and articular adipose) of chickens. One hundred and fifty 1-day-old chickens were randomly assigned to two groups of 75 each and were fed a low-Se diet (0.032 mg/kg Se) or a control diet (0.282 mg/kg Se). The expression levels of 25 Sel mRNAs were determined on days 35, 45, and 55 from three parts (subcutaneous adipose, visceral adipose, and articular adipose) of the chicken adipose tissues. The results showed that the expression levels of the 25 Sel mRNAs were significantly lower (P?<?0.05) in the low-selenium group than in the control group. In addition, the Sel mRNA expression levels in the three adipose tissues were observed to decrease in a time-dependent manner with increasing feeding time.  相似文献   

18.
Pan  Shuqin  Zhang  Keying  Ding  Xuemei  Wang  Jianping  Peng  Huanwei  Zeng  Qiufeng  Xuan  Yue  Su  Zuowei  Wu  Bing  Bai  Shiping 《Biological trace element research》2018,181(2):347-360

Manganese (Mn) is an essential nutrient for both host and pathogen. Recent studies have demonstrated the nutritional immunity of Mn against Salmonella infection in mammals. To investigate the effect of high dietary Mn on immune responses of broilers following Salmonella challenge, 144 1-day-old male broilers were fed a basal diet (containing 20.04 mg Mn/kg) plus an additional 40 (the control group) or 400 mg Mn/kg (the H-Mn group) for 7 days. The 72 broilers in each group were then orally inoculated with 5 × 107 CFUs of Salmonella typhimurium (ATCC#14028) or phosphate-buffered saline. Peripheral blood, spleens, cecal tonsils, and bursa of Fabricius were collected from Salmonella-inoculated and Salmonella-noninoculated broilers (n = 6) at 2 days post inoculation (2 DPI) and 7 days post inoculation (7 DPI). Peripheral blood lymphocyte subpopulations were determined by flow cytometry. The messenger RNA (mRNA) abundance of genes was determined by quantitative real-time polymerase chain reaction. Salmonella counts were higher (P < 0.05) in the H-Mn group than that in the control group at 2 DPI in the cecal contents of Salmonella-inoculated broilers. High dietary Mn increased CD3+CD4+ and CD3+CD8+ percentages in the peripheral blood of Salmonella-inoculated broilers at 2 DPI. Salmonella inoculation increased interleukin (IL)-6 mRNA expression in spleens and bursa of Fabricius at 2 DPI and increased IL-1β and IL-6 mRNA expression in cecal tonsils at 7 DPI in the H-Mn group. These changes were not observed in the control group. High dietary Mn increased interferon-γ (IFN-γ) in spleens and decreased IFN-γ and IL-12 mRNA expression in cecal tonsils of Salmonella-inoculated broilers at 2 DPI. High dietary Mn decreased IL-17 mRNA expression in the bursa of Fabricius at 7 DPI, but increased this expression in cecal tonsils at 2 and 7 DPI in Salmonella-inoculated broilers. These results suggested that dietary Mn level affected T helper (Th) 1-cytokine reaction in spleens and cecal tonsils, and Th17-mediated immunity in cecal tonsils and the bursa of Fabricius of broilers when challenged with Salmonella.

  相似文献   

19.
Manganese (Mn) is an essential trace element required for normal development and bodily function. However, little is known about the effect of excessive amounts of Mn in immune organs of poultry. The aim of this study was to investigate the effect of dietary Mn on the content of trace elements, such as copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), and selenium (Se), and the mRNA level of IL-1β and IL-2 in immune organs (spleen, thymus, and bursa of Fabricius) and the content of IL-1β and IL-2 in serum of poultry. Fifty-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, and 1,800 mg/kg. The immune organs were collected at 30, 60, and 90 days, respectively, and the content of trace elements and the mRNA level of IL-1β and IL-2 were examined; the serum were collected and the IL-1β and IL-2 contents detected. The results showed that Mn content in immune organs increased and Fe, Zn, and Ca contents decreased; however, Cu and Se contents showed no difference. IL-1β and IL-2 mRNA levels and IL-1β and IL-2 contents decreased. The present study demonstrates that excess exposure to Mn results in metal accumulations in immune organs. Manganism can disturb the balance of trace elements in immune organs and induce immune suppression in the molecular level; therefore, the immune function of cocks are also suppressed after manganism.  相似文献   

20.
The objective of this work was to determine whether long-term selenium (Se) deficiency might affect the antioxidant capacity of rat aorta, and the activities and expressions of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat arterial walls. Weanling male Wister rats were fed Se-deficient or Se-adequate diets for 12 months. For the Se supplementation, sodium selenite was supplemented in drinking water (1 microg Se/ml) for 1 month. The aorta isolated from these groups were used to determine activities and mRNA levels. In comparison with the control, the activity and expression of GPx, superoxide dismutase activity and the total antioxidant capacity were significantly decreased in Se-deficient rats arterial walls. Following Se supplementation, they were restored to different extents. The content of malondialdehyde was increased markedly in Se-deficient rats. There seems an inverse relationship between the dietary Se and the activity and expression of TR. A positive relationship exists between dietary Se and the antioxidant capacity of rat arterial walls. The activities and expressions of GPx and TR in arterial walls were regulated by selenium by different mechanisms. Regulation of the expression of TR was mediated by reactive oxygen species, but of GPx by selenium status. The thioredoxin system may be the major cellular redox signaling system in rat arteries, rather than the glutathione system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号