首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Agrobacterium rhizogenes oncogene rolB mimics the effects of auxin in that it increases the sensitivity of transformed cells to this hormone. Here we isolated a tobacco gene, ROX1, acting downstream of rolB. We show that plants with reduced levels of ROX1 mRNA, due to the expression of a 35S-driven ROX1-antisense construct, have flowers with stamens and pistils longer than normal because of an increased number of cells. Localized expression of rolB in anthers results in overexpression of ROX1 and reduced growth of stamens, due to a reduced number of cells. In addition, the longer stamens of antisense plants show a delayed xylem differentiation in the lateral bundles, primarily of the junction region between anther and filament, while the shorter stamens of ROX1-overexpressing plants show a precocious differentiation of xylem cells in the same tissues. Expression of ROX1 in stamens peaks at early stages of stamen growth, and ROX1 mRNA is localized mostly in anther procambial cells. The sequence of ROX1 shares a conserved element with a number of plant genes, including TED3, which is involved in xylem differentiation. These results point to a role of ROX1 in the balance between proliferation of procambial cells and xylem differentiation during stamen development.  相似文献   

2.
We provide evidence on the localization, synthesis, transport, and effects of auxin on the processes occurring late in Arabidopsis thaliana stamen development: anther dehiscence, pollen maturation, and preanthesis filament elongation. Expression of auxin-sensitive reporter constructs suggests that auxin effects begin in anthers between the end of meiosis and the bilocular stage in the somatic tissues involved in the first step of dehiscence as well as in the microspores and in the junction region between anther and filament. In situ hybridizations of the auxin biosynthetic genes YUC2 and YUC6 suggest that auxin is synthesized in anthers. In agreement with the timing of auxin effects, the TIR1, AFB1, AFB2, and AFB3 auxin receptor-encoding genes are transcribed in anthers only during late stages of development starting at the end of meiosis. We found that in tir1 afb triple and quadruple mutants, anther dehiscence and pollen maturation occur earlier than in the wild type, causing the release of mature pollen grains before the completion of filament elongation. We also assessed the contribution of auxin transport to late stamen developmental processes. Our results suggest that auxin synthesized in anthers plays a major role in coordinating anther dehiscence and pollen maturation, while auxin transport contributes to the independent regulation of preanthesis filament elongation.  相似文献   

3.
4.
5.
6.
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.  相似文献   

7.
Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.  相似文献   

8.
Genetic Ablation of Floral Cells in Arabidopsis   总被引:11,自引:3,他引:8       下载免费PDF全文
A chimeric toxic gene consisting of the diphtheria toxin A chain gene fused to a promoter previously shown to direct pistil- and anther-specific expression was used to genetically target cell killing in transgenic Arabidopsis. Flowers of Arabidopsis transformants that carried the toxic gene fusion had distinct structural defects. The papillar cells at the stigma surface were stunted and were biosynthetically inactive. Anther development was also impaired by toxic gene expression, leading to abnormalities in anther dehiscence, pollen morphology, and pollen germination. The combined defects of pistil and anther rendered transformants that carried the toxic gene fusion self-sterile. However, the transformants were cross-fertile with untransformed plants: the viable pollen of ablated plants was rescued by wild-type stigmas, and, strikingly, the ablated papillar cells allowed the growth of wild-type pollen.  相似文献   

9.
10.
delayed dehiscence1 is an Arabidopsis T-DNA mutant in which anthers release pollen grains too late for pollination to occur. The delayed dehiscence1 defect is caused by a delay in the stomium degeneration program. The gene disrupted in delayed dehiscence1 encodes 12-oxophytodienoate reductase, an enzyme in the jasmonic acid biosynthesis pathway. We rescued the mutant phenotype by exogenous application of jasmonic acid and obtained seed set from previously male-sterile plants. In situ hybridization studies showed that during the early stages of floral development, DELAYED DEHISCENCE1 mRNA accumulated within all floral organs. Later, DELAYED DEHISCENCE1 mRNA accumulated specifically within the pistil, petals, and stamen filaments. DELAYED DEHISCENCE1 mRNA was not detected in the stomium and septum cells of the anther that are involved in pollen release. The T-DNA insertion in delayed dehiscence1 eliminated both DELAYED DEHISCENCE1 mRNA accumulation and 12-oxophytodienoate reductase activity. These experiments suggest that jasmonic acid signaling plays a role in controlling the time of anther dehiscence within the flower.  相似文献   

11.
A novel cell ablation strategy blocks tobacco anther dehiscence.   总被引:13,自引:0,他引:13       下载免费PDF全文
We utilized a new cell ablation strategy to ablate specific anther cell types involved in the dehiscence process. The tobacco TA56 gene promoter is active within the circular cell cluster, stomium, and connective regions of the anther at different developmental stages. We introduced a cytotoxic TA56/barnase gene into tobacco plants together with three different anticytotoxic barstar genes. The anticytotoxic barstar genes were used to protect subsets of anther cell types from the cytotoxic effects of the TA56/barnase gene. The chimeric barstar genes were fused with (1) the tobacco TP12 gene promoter that is active at high levels in most anther cell types; (2) the soybean lectin gene promoter that is active earlier in the connective, and at lower levels in the circular cell cluster and stomium, than is the TA56 promoter; and (3) the tobacco TA20 gene promoter that is active at high levels in most anther cell types but has a different developmental profile than does the TP12 promoter. Normal anther development and dehiscence occurred in plants containing the TA56/barnase and TP12/barstar genes, indicating that barstar protects diverse anther cell types from the cytotoxic effects of barnase. Anthers containing the TA56/barnase and lectin/barstar genes also developed normally but failed to dehisce because of extensive ablation of the circular cell cluster, stomium, and contiguous connective regions. Anthers containing the TA56/barnase and TA20/barstar genes failed to dehisce as well. However, only the stomium region was ablated in these anthers. The connective, circular cell cluster, and adjacent wall regions were protected from ablation by the formation of barnase/barstar complexes. We conclude that anther dehiscence at flower opening depends on the presence of a functional stomium region and that chimeric barnase and barstar genes containing promoters that are active in several overlapping cell types can be used for targeted cell ablation experiments.  相似文献   

12.
13.
Carmi N  Salts Y  Dedicova B  Shabtai S  Barg R 《Planta》2003,217(5):726-735
The molecular signals for the development of the ovary into fruit following ovule fertilization are not clear. However, in many species, including tomato ( Lycopersicon esculentum Mill.), auxins and auxin transport inhibitors can substitute for fertilization as activators of fruit set, suggesting that this plant hormone plays a key role in this process. In agreement, transgenes for auxin biosynthesis expressed under ovary- or ovule-specific promoters were shown earlier to enable parthenocarpic (i.e. seedless) fruit development. In the present study, we tested an alternative approach for the induction of parthenocarpy that is based on ovary-specific expression of the Agrobacterium rhizogenes-derived gene rolB. This gene was chosen because rolB transgenic plants manifest several syndromes characteristic of auxin treatment. Tomato plants transformed with a chimeric construct containing the rolB gene fused to the ovary- and young-fruit-specific promoter TPRP-F1 developed parthenocarpic fruits. Fruit size and morphology, including jelly fill in the locules of the seedless fruits, were comparable to those of seeded fruits of the parental line. Although it is not known whether ROLB signals for the same cassette of genes involved in fertilization-dependent fruit development, it clearly activates a battery of genes that enable successful completion of seedless fruit development in tomato.  相似文献   

14.
It was well known that auxin is critical for anther/pollen grain development, however, the clear distribution and detailed effects of auxin during floral development are still unclear. We have shown here that, through analyzing GUS activities of Arabidopsis lines harboring auxin response elements DR5-GUS, auxin was mainly accumulated in the anther during flower stages 10–12. Further studies employing the indoleacetic acid–lysine synthetase (iaaL) coding gene from Pseudomonas syringae subsp. savastanoi under control of the promoter region of Arabidopsis phosphatidylinositol monophosphate 5-kinase 1 gene, which conducts the anther filament-specific expression, showed that block of auxin flow of filaments resulted in shortened filaments and significantly defective pollen grains. Similar phenotype was observed in tobacco plants transformed with the same construct, confirming the effects of auxin flow in filaments on anther development. Detailed studies further revealed that the meiosis process of pollen grain was normal while the mitosis at later stage was significantly defected, indicating the effects of auxin flow in filaments on pollen grain mitosis process. Analysis employing [14C]IAA, as well as the observation on the expression of AtPIN1, coding for auxin efflux carrier, demonstrated the presence of polar auxin transport in anther filaments and pollen grains.  相似文献   

15.
Summary Growth characteristics of tobacco protoplasts containing rolA linked to its own promoter, or the rolB, or rolC genes of Agrobacterium rhizogenes linked to the Cauliflower Mosaic Virus 35S RNA promoter were compared with those from untransformed plants. RolA protoplasts require auxin and cytokinin for callus formation. Protoplasts overexpressing rolB and C form callus in the absence of exogenously applied auxin and cytokinin, respectively. Long term callus growth requires auxin, but the requirement for cytokinin is not critical. Optimal transient expression of an auxin responsive promoter element occurred at lower external levels of auxin in rolB and rolC protoplasts compared with untransformed protoplasts. Addition of putrescine was required for auxin responsive transient gene expression in rolA protoplasts suggesting that polyamines, or their products affect gene expression in rolA plants.Abbreviations T-DNA transferred DNA - TL-DNA left transferred DNA - NAA naphthalene acetic acid - PEG polyethylene glycol - GUS glucuronidase - CaMV cauliflower mosaic virus  相似文献   

16.
Expression and physiological effects of the root-inducing rolB gene of Agrobacterium rhizogenes T-DNA were studied simultaneously in tobacco (Nicotiana tabacum) mesophyll protoplasts. The kinetic study of the expression of rolB mRNA following exogenous auxin application showed that auxin transiently stimulated rolB expression, with mRNA levels starting to accumulate 6 to 9 h after auxin was supplied and increasing 300-fold after 12 to 18 h. The parallel study of the auxin sensitivity of rolB-transformed protoplasts, as assayed by their electrical response to the hormone, showed that the auxin treatment generated an increase in sensitivity by a factor of up to 100,000, whereas in untransformed protoplasts the same auxin treatment induced an increase in auxin sensitivity that never exceeded 30- to 50-fold. This reflects a strong cooperative effect of auxin and rolB in transformed protoplasts. Surprisingly, the maximal increase in sensitivity was observed several hours before the maximal accumulation of rolB mRNA, suggesting that the dramatic control of auxin sensitivity by auxin in rolB-transformed protoplasts requires only low levels of rolB expression. Antibodies directed against ZmER-abp1, the major auxin-binding protein from maize, differentially altered the auxin sensitivity of the electrical response of rolB-transformed and normal protoplasts. This suggests that alterations of the auxin reception-transduction pathway at the plasma membrane of rolB-transformed protoplasts may account for their increased auxin sensitivity.  相似文献   

17.
Inhibition of flower pigmentation in transgenic petunia plants was previously accomplished by expressing an antisense chalcone synthase (chs) gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. This chimeric gene was not effective in inhibiting pigmentation in anthers, presumably because the viral CaMV 35S promoter was insufficiently expressed in cell types of this organ in which the pigments are produced. Insertion of the anther box, a homologous sequence found in other genes expressed in anthers, resulted in a modified expression pattern driven by this promoter, as monitored by the beta-glucuronidase (gus) gene. In addition to the basic CaMV 35S expression pattern in anthers, GUS activity was observed in tapetum cells when the modified promoter was fused to the gus gene. This promoter construct was subsequently used to drive an antisense chs gene in transgenic petunia, which led to the inhibition of pigment synthesis in anthers of five of 35 transformants. Transgenic plants with white anthers were male sterile due to an arrest in male gametophyte development. This finding indicated that flavonoids play an essential role in male gametophyte development.  相似文献   

18.
The time courses of 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production in developing anthers of petunia fertile and sterile lines and the effects of exogenously applied ethylene and an inhibitor of ethylene action, 2,5-norbornadiene (NBD), on male gametophyte development and germination were investigated. Fertile male gametophyte development was accompanied by two peaks of ethylene production by anther tissues. The first peak occurred during microspore development simultaneously with degeneration of both tapetal tissues and middle layers of the anther wall. The second peak coincided with maturation and dispersal of pollen grains. The mature pollen is characterized by a high ACC content (up to 300 nmol/g). Exogenously applied ethylene (1–100 ppm) induced degradation of gametophytic generation at the meiosis stage. NBD completely inhibited anther development at the early stages of its development and delayed anther dehiscence. In anther tissues of the petunia sterile line, tenfold higher ethylene production was observed at the meiosis stage compared to that in fertile male gametophytes and this correlated with degeneration of both microsporocytes and tapetal tissues. In vitro male gametophyte germination was accompanied by an increase of ethylene production, whereas NBD completely blocked male gametophyte germination. These results suggest that ethylene is an important factor in male gametophyte development and germination.  相似文献   

19.
The indoleacetic-acid-lysine synthetase (iaaL) gene from Pseudomonas syringae subsp. savastanoi was fused to tobacco tapetum-specific expression promoter TA29, and introduced into tobacco. The expression pattern of this chimeric gene was studied, and the endogenous indoleacetic acid (IAA) levels in different organs were assayed. The results demonstrated that TA29 promoter was only able to direct the specific expression of iaaL gene in transgenic tobacco anther, and resulted in the decrease of endogenous IAA levels in transgenic tobacco anther. No significant phe-notype variation was observed among the transgenic plants at the whole plant level. However, the percentage of pollen embryogenesis was reduced to 11 % when anthers of the transgenic plants were cultured on the modified hormone-free Nistch H (NH) medium, while those of both CK1 and CK2 (see sec. 1.2.2) were more than 50% ; when the an-thers were cultured on NH medium supplemented with 0. 2 mg/L IAA, the percentage of pollen embryogenesis re-stor  相似文献   

20.
iaaM基因在烟草花粉中的表达及其在花粉发育中的作用   总被引:3,自引:0,他引:3  
试验利用花粉特异表达的启动子(Lat52)和绒毡层特异表达的启动子(TA29)引导外源生长素合成代谢基因(iaaM)在烟草花粉中表达以研究生长素在花粉发育中的作用。转Lat52-iaaM基因或转TA29-iaaM基因烟草在形态上表现出变异,如从茎上形成不定根,叶呈卷曲状等典型的生长素表达的性状。另外,与对照相比,转基因烟草花药中IAA水平显著增加,且植株矮化,开花期推迟,有的转基因烟草未能开花。上述现象表明:Lat52和TA29启动子的表达并不仅限于花粉或绒毡层,或者说这两个启动子的表达有些泄漏。转基因烟草的花药形状有较大的变异,早期的每个花药中花粉数明显减少,但这些花粉可被醋酸-洋红染色。所有能开花的转基因烟草均可收到种子,但收自某些转基因株系的种子不能萌发。所有这些结果表明生长素在花粉发育过程中起重要作用,过量的生长素会导致花粉发育的异常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号