首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previous results have shown that some proteins secreted in the culture medium are involved with the formation of embryogenic cells and can modify somatic embryo differentiation. Undifferentiated cell suspensions grown in the presence of 13 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and obtained from embryogenic and non-embryogenic callus were used to study these events in sugarcane plants (cv.PR-62258). The cell suspension growth curves were determined and soluble proteins were extracted from embryogenic and non-embryogenic callus and culture medium from cell suspensions. In embryogenic callus we detected 1.43 times more protein than in non-embryogenic callus and the electrophoretic protein patterns show specific polypeptides for both callus types. In embryogenic callus we detected a cluster of four polypeptides in the range of 38–44 kDa and another polypeptide of 23 kDa that were not observed in non-embryogenic callus. In nonembryogenic callus there is a 35-kDa polypeptide that was not detected in embryogenic callus. In the case of extracellular proteins, the medium from embryogenic cell suspensions contained four polypeptides of 41, 38, 34 and 28 kDa that were slightly detected in the medium from non-embryogenic cell cultures; we also detected a band at 15 kDa that could not be observed in the medium from non-embryogenic cell suspensions. These results suggest that the development of embryogenic callus and cell suspensions is related to the type and amount of intracellular proteins in the callus cells and to the secreted proteins from these cells into the medium.  相似文献   

2.
Anthers of Populus maximowiczii with microspores at the mononucleate stage were cultured at 20°C in the dark on agar-solidified Murashige and Skoog medium after 4 days of cold treatment (4°C). After 4 to 8 weeks anthers on medium supplemented with 0.5, 1.0 or 2.0 mg l-1 2,4-D in combination with 0.1 mg l-1 kinetin developed calli that were characterized by smooth surface and gel-like consistency. These calli were comprised of expanding microspores surrounded by a mucilaginous matrix. After transfer of anthers with embryogenic calli to MS medium with low hormone levels (NAA at 0, 0.1 and 0.1 mg l-1 and BA at 0, 0.1 and 1.0 mg l-1) microspores started to divide and initiated independent meristematic nests, which developed into embryoidal structures, resembling globular to bi-polar heart-shaped embryoids. The embryoids germinated precociously without developing cotyledons. After transfer to medium with a range of levels of BA (1.0, 2.5 and 5.0 mg l-1), adventitious shoots developed mainly from the roots. Shoots were rooted in half strength MS medium supplemented with 0.025 mg l-1 NAA. Via this pathway anther response in the best treatment combination was 10%.Abbreviations BA benzyladenine - MS Murashige & Skoog - NAA naphthaleneacetic acid - 2,4-D-2,4 dichlorophenoxyacetic acid  相似文献   

3.
Lemon [Citrus limon (L.) Burm.] styles were treated with different growth regulators for induction of somatic embryos. Styles and stigmas were dissected from flowers and cultured on a Murashige and Skoog (MS) basal medium supplemented with 4.52 M 2,4-dichlorophenoxyacetic acid and 13.3 M 6-benzyladenine. Callus was induced from the style base 2 weeks after the treatment initiation, and embryos appeared 2 months later.Abbreviations BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - MS Murashige & Skoog (1962) - NAA -naphthaleneacetic acid  相似文献   

4.
Normal callus and embryogenic suspensor mass (ESM) were induced from the same immature embryo of Abies alba Mill. These two tissues were found to differ in their isoenzyme patterns of peroxidase, glutamate dehydrogenaseand non-specific esterase and in their requirement for myo-inositol inculture medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.  相似文献   

6.
Embryogenic callus cultures were established from immature cucumber(Cucumis sativus L.) embryos on E20A (Dumas de Vaulxet al. 1981) or MS (Murashige and Skoog 1962) media supplemented with 6-benzylaminopurine (BAP), α-naphthylacetic acid (NAA) and/or 2,4-dichlorophenoxyacetic acid (2,4-D). Regeneration of plants was observed after a transfer to culture media either without growth regulators or supplemented with kinetin and NAA. Flow cytometry was employed to estimate DNA ploidy levels. Most of cell nuclei in young leaf tissues were found in G1 phase with 2C DNA content. Callus cultures were mixoploid with DNA content ranging from 2C to 32C. The frequency of polyploid cells was increasing with the age of culture and the polyploidization was accompanied by a gradual loss of regeneration ability. Plants regenerated from callus cultures were classified as diploid (57 %), tetraploid (18 %), octoploid (4 %) and mixoploid (2n/4n, 4 %) and (4n/8n, 17 %). The results of this study confirmed a close link between the polyploidization and the loss of totipotencyin vitro. Tetraploid plants obtained in this study have a potential to be used in interspecific crosses where their tetraploid status could help in overcoming existing breeding barriers due to differences in chromosome number.  相似文献   

7.
8.
In vitro chromosome doubling of embryogenic callus lines of the Citrus cultivars Umatilla and Dweet tangors (Citrus reticulata Blanco×C. sinensis [L.] Osb.), Caffin clementine (C. clementina Hort. ex Tan.) and Wheeny grapefruit (C. paradisi Macf) was carried out in the presence of either 0.05 or 0.1% colchicine, or 0.01, 0.05 or 0.1% oryzalin. Embryogenic callus development was partly suppressed in the presence of colchicine, and completely suppressed by oryzalin at all concentrations tested. No plants were regenerated from any of the oryzalin treatments. Ploidy level of plants regenerated from the colchicine treatments was determined using flow cytometry and chromosome squashes. Three desirable non-chimeric, autotetraploid plants of the mono-embryonic cultivar Umatilla were produced using 0.05% colchicine and one from 0.1% colchicine. One mixoploid Dweet plant was produced using 0.1% colchicine.  相似文献   

9.
Citrus limon has a wet stigma which can be divided in two zones: a glandular superficial one formed by papillae, and a non-glandular one formed by parenchymatic cells. The stigmatic exudate is produced by the papillae after the latter have reached their ultimate size. The papillae of the mature pistil are of varying size and composition. Both the unicellular and multicellular ones are present. The cells at the base of the papillae are rich in cytoplasm, whereas the tip cells are vacuolated. Histochemical analysis has shown that the exudate of Citrus is composed of lipids, polysaccharides, and proteins. Our results indicate that the lipidic component is produced and secreted first, followed by production and secretion of the polysaccharidic component. The lipidic component of the exudate is produced in the basal papillae cells and accumulates as droplets in dilated parts of the smooth endoplasmic reticulum (SER). Subsequently the lipid droplets are transported to the plasma membrane, and transferred by the latter into the cell walls. Then the exudate component is accumulated in the intercellular spaces and in the middle lamellar regions of the walls. Subsequently, the polysaccharidic component of the exudate is produced and secreted by the tip cells of the papillae.Abbreviations RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

10.
Nucellus-derived embryogenic callus cultures of Salustiana sweet orange were subjected to cryoconservation assays. Cryoprotection with 10%(vol/vol) dimethylsulfoxide, freezing by slow cooling and thawing by fast warming was suitable to recover viable growing cultures and whole plants through embryogenesis. Evaluation of liquid phase R 1 and solid phase R 2 cooling rates using a programmable freezing unit indicated that 100% of embryogenic cultures survived when frozen using a range of cooling rates (R 1 not above 0.5°C min–1 and R 2 not above 1°C min 1) and thawed by fast warming. Storage up to 2 years in liquid nitrogen did not affect the growth of the cryopreserved cultures and the recovery of whole plants. Cultures of four cultivars of sweet orange (C. sinensis Osb.), three cultivars of grapefruit (C. paradisi Macf.), and one cultivar each of lemon [C. limon (L.) Burm. f.], Cleopatra mandarin (C. reshni Hort. ex Tan.), sour orange (C. aurantium L.) and Mexican lime [C. aurantifolia (Christm.) Swing.] have been successfully cryopreserved. Problems using a viability assessment using fluorescein diacetate staining are discussed. Received: 15 April 1996 / Revision received: 22 July 1996 / Accepted: 6 August 1996  相似文献   

11.
12.
Genotypic restrictions on plant regeneration from cultured cells have hindered the genetic transformation of most barley cultivars. Optimizing culturing protocols for specific cultivars of commercial interest may facilitate their genetic transformation. Plant regeneration from embryogenic callus of `Harrington', `Morex', and `Hector' as affected by certain protocol modifications was examined in replicated experiments. Regeneration was improved for all cultivars by separately autoclaving certain components of the culture media and by reducing the amount of embryogenic callus cultured per petri dish. Regeneration improvements in response to various concentrations of copper and 2,4-dichlorophenoxyacetic acid were more genotype specific. This study suggests that the development and use of genotype-specific protocols can enhance plant regeneration. Enhancements in plant regeneration are expected to facilitate the transformation of commercial barley germplasm. Received: 11 August 1997 / Revision reveived: 2 March 1998 / Accepted: 20 March 1998  相似文献   

13.
Differences in competence acquisition and subsequent embryo maturation in embryogenic and non-embryogenic callus of sugarcane var. SP79-1011 were evaluated using histomorphological analysis, growth curves, numbers of somatic embryos, and polyamine contents. Embryogenic callus was formed by cells with embryogenic characteristics such as a rounded shape, prominent nuclei, a high nucleus: cytoplasm ratio, small vacuoles and organized globular structures. However, non-embryogenic callus presented dispersed, elongated and vacuolated cells with a low nucleus: cytoplasm ratio; these characteristics did not allow for the development of somatic embryos even upon exposure to a maturation stimulus. These results suggest that non-embryogenic callus does not acquire embryogenic competence during induction and that maturation treatment is not sufficient to promote somatic embryo differentiation. The use of activated charcoal (AC; 1.5 g L?1) resulted in a higher somatic embryo maturation rate in embryogenic callus but did not yield success in non-embryogenic callus. Embryogenic callus incubated with control (10 μM 2,4-dichlorophenoxyacetic acid) and maturation (1.5 g L?1 AC) treatments for 28 days showed similar patterns of total free polyamines; these results differed from the results observed with non-embryogenic callus, suggesting that embryogenic callus already exhibits a characteristic pattern of endogenous polyamine levels. At 28 days of culture with maturation treatment, embryogenic callus exhibited significantly higher levels of free Spm than embryogenic callus incubated with control treatment and non-embryogenic callus incubated with both treatments. This result suggests that Spm could be important for the acquisition of embryogenic competence and somatic embryo maturation in sugarcane var. SP79-1011.  相似文献   

14.
Protoplasts were isolated from friable embryogenic callus (FEC) and from suspensions derived from FEC of cassava genotype TMS60444. Suspensions yielded the highest number of protoplasts (1.5×106 protoplasts/g fresh weight). Protoplasts plated at a density of 105–106/ml in a medium supplemented with 0.5 mg/l α-naphthaleneacetic acid and 1 mg/l zeatin began dividing after 3 days, and after 30 days this resulted in an absolute plating efficiency as high as 2.5%. After 2 months of culture, 60% of the developed calli were highly friable and in appearance identical to the original FEC. The protoplast derived FEC was first purified through two rounds of selection of 3 weeks each before beeing cultured for regeneration of plants. This was done by culturing the protoplast-derived FEC for 11 weeks on maturation medium, yielding a maximum of 184 organized embryos per 10.000 initially cultured protoplasts. Most of the organized embryos were torpedo shaped and matured after they had been isolated from the calli and transferred to fresh medium. Mature embryos were multiplied by secondary somatic embryogenesis at high efficiency (>90%) on a medium supplemented with 8 mg/l 2,4-dichlorophenoxyacetic acid. About 30% of the mature secondary somatic embryos developed into shoots after transfer to a medium supplemented with 1 mg/l N6-benzylaminopurine (BAP). Shoots rooted readily on a medium without BAP. Received: 30 August 1996 / Revision received: 9 June 1997 / Accepted: 1 October 1997  相似文献   

15.
Immature zygotic embryos of two wheat (Triticum aestivum L.) genotypes, known for their different ability to generate embryogenic callus, were used as initial explants to establish callus cultures. Embryogenic and non-embryogenic calluses were obtained from the competent genotype (`Combi'), while only non-embryogenic callus was produced by the incompetent one (`Devon'). The morphogenetic competence of each callus type was evaluated by transferring some segments to regeneration conditions. The endogenous hormone concentrations (free indole-3-acetic acid [IAA], abscisic acid [ABA], gibberellins 1, 3 and 20 [GAs], zeatin/zeatin riboside [Z/ZR] and N 6[2-isopentenyl] adenine/ N 6[2-isopentenyl] adenosine; [iP/iPA]) of the initial explants were determined by means of radio-immunoassay and showed that the only difference was the higher concentration of ABA found in the embryos of the most competent genotype; whose embryos showed a reduced rate of precocious germination. When analysing the endogenous hormone concentrations in the various callus types generated in each genotype, it was found that only differences in the free IAA concentrations were associated with variations in the morphogenic properties of the calluses. Higher concentrations of endogenous free IAA were typical of embryogenic callus cultures. It was also observed that a loss in the embryogenic competence of the calluses, due to a prolonged time of culture, occurred concomitantly with a reduction in free IAA concentrations, practically to the concentrations found in the non-embryogenic calluses.  相似文献   

16.
The frequency of plant regeneration from seed-derived Pokkali rice callus has been substantially increased. Four conclusions were drawn from the study: (1) Non-embryogenic callus consisting of elongated, highly-vacuolated cells did not produce regenerated plants. Embryogenic callus consisting of small, non-vacuolated cells produced somatic embryos and regenerated plants. (2) The numbers of plants could be markedly increased by optimizing a medium for embryogenic callus production and a second medium for plant regeneration from embryogenic callus. (3) The optimization of callus to medium volume ratio of 6.5 mg embryogenic callus per 1.0 ml of medium significantly increase plant production on regeneration medium. (4) A further significant increase was obtained by using regeneration medium previously conditioned for one or two weeks by optimal amounts of embryogenic callus. At present, the callus derived from a single seed in six months could theoretically be used in the seventh month to produce 127500 plants.This research was supported by the Agency for International Development under Contract No. AID/DSAN-C-0273  相似文献   

17.
A selected Glycine max (L.) salt-tolerant calluscell line (R100) was significantly more tolerant to salt than a salt-sensitiveline (S100) during exposure to salt stress. Growth (Fresh and Dry weights) ofthe R100 cell line declined significantly at NaCl concentrations greater than 75mM, while growth of the S100 cell line was already impaired at 25mM NaCl. Levels of Na+ and Cl inthe callus were elevated as the salt concentration increased, whileK+, Ca2+ and Mg2+ levels weremarkedly reduced. The lower s reduction and Na+accumulation found in the S100 callus corresponded with the higher callusdehydration during salinity. Calli grown on Miller's basal medium weresupplied with 100 mM NaCl for 12 days and then supplied with mediumwithout NaCl to relieve salinity stress. The Na+ andCl content decreased in both R100 and S100 cell lines duringthe first 24 h and reached normal levels four days after transferto the normal medium. This lower concentration was maintained until the end ofthe experiment. Concurrently, the K+ content andK+/Na+ ratio increased sharply and reached theirhighest levels within 24 h in both salt-sensitive and salt-tolerantcell lines. These data suggest that the inhibitory effects of salinization ongrowth and accumulation of potentially toxic ions (Na+,Cl) can be readily reversed when salinity is relieved.  相似文献   

18.
19.
Conditions have been developed that induce maize (Zea mays L.) protoplasts to re-synthesize cell walls and to initiate cell divisions. Two types of embryogenic maize callus were used as a source of protoplasts: a heterogeneous callus (Type I) derived from immature embryos after three weeks in culture, and a friable, rapidly growing callus (Type II) selected from portions of the Type I callus. Many variables in the growth conditions of the donor tissue (type of medium, transfer schedule, age of callus), protoplast isolation solutions (pH, osmolarity, type and concentration of cell wall hydrolyzing enzymes, addition of polyamines) and conditions (amount of time in enzyme, amount of tissue per volume of enzyme incubation medium, agitation, preplasmolysis of source tissue, type of callus), and purification procedures (filtration and-or flotation), were found to affect both yield and viability of protoplasts (based upon fluorescein-diacetate staining). Our isolation procedure yielded high numbers of viable, uninucleated maize callus protoplasts which were densely cytoplasmic and varied in size from 20 to 50 m in diameter. Protoplasts plated in solid medium formed walls and divided several times. Of several gelling agents tested for protoplast propagation, only agarose resulted in protoplasts capable of sustained divisions leading to the formation of microcalli. Plating efficiency was established over a wide range of protoplast densities (103–107 protoplasts/ml). Highest plating efficiency (25%) was obtained at 1·106 protoplasts/ml). The resulting microcalli grew to be dense clusters of about 0.1–0.5 mm in diameter and then stopped growing. Nurse cultures of maize and carrot (Daucus carota L.), were used to establish that individual protoplasts (not contaminating cells or cell clusters) formed walls and divided. Nurse cultures also increased the efficiency of microcallus formation from protoplasts.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) salts - MS 1D Murashige and Skoog salts with 1 mg/l 2,4-D - MS 2D Murashige and Skoog salts with 2 mg/l 2,4-D - N6 medium of Chu et al. (1975) - NN67-mod medium of Nitsch and Nitsch (1967) as modified in the present paper - FDA fluorescein diacetate - LMP low melting point  相似文献   

20.
Callus cultures were initiated from soybean (Glycine max (L.) Merr cv. Acme) cotyledons onMiller's basal medium supplemented with 2 mg L–1NAA and 0.5 mg L–1 kinetin. Growing cells wereexposed to increasing concentrations of NaCl in themedium. A concentration of 100 mM NaCl completelyinhibited callus growth. After incubation for 28 d,cells which could tolerate this concentration of NaClgrew to form cell colonies. A NaCl-tolerant line wasobtained through continuous subculturing on 100 mMNaCl. Salt tolerance in this culture was characterizedby an altered growth behavior, reduced cell volume, and accumulation of Na+, Cl, proline and sugars when grown under salt stress, as well as on normal media. These characteristics, which proved tobe stable after the culture was transferred to asalt-free medium, is commonly associated with halophytes. Presented data suggest that this salt tolerance is the result of a shift towards a halophytic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号