首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Action spectra for the induction of apical swelling in red-light-grown single-celled protonemata of the fernAdiantum were determined by continuous irradiation with monochromatic light for 5 hr. The resultant action spectra showed a sharp peak at 480 nm with a broad plateau in the region of blue and near ultraviolet light. Wave-lengths longer than 520 nm had no effect. When the tips of filamentous protonemata were irriadiated with a narrow beam (20 μm in width) of blue light for 3 hr, apical swelling and apical growth inhibition obviously took place in all protonemata tested, while no significant effect was observed when any other regions than the tip were irradiated. Polarized blue light vibrating parallel with the developmental axis of protonemata induced apical swelling and also prevented apical growth as effectively as non-polarized light, but that vibrating in a normal direction was significantly less effective.  相似文献   

2.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

3.
The action spectrum for polarotropism was determined, using the Okazaki large spectrograph, by brief irradiation with light between 260 nm and 850 nm in single-celled protonemata of the fern Adiantum capillus-veneris L., which had been cultured for 6 days in red light and then in the dark for 15 h. The action spectrum had a peak at around 680 nm. This effect was nullified by subsequent irradiaton with far-red light, and typical red/far-red reversibility was observed, indicating the involvement of phytochrome. Polarized ultraviolet or blue light had no effect on the direction of apical growth. The action spectrum for phototropism was also determined in the red light region by means of brief microbeam irradiation of a flank of the subapical region of the protonema. This spectrum showed a peak at 662 nm which was consistent with the absorption peak of phytochrome, but not with the peak of the action spectrum for polarotropism.  相似文献   

4.
The intracellular localization of the photoreceptive site forblue light-induced cell division in single-celled protonemataof Adiantum capillus-veneris L. was investigated using polarizedlight irradiation and protonemal cell centrifugation. The responseto irradiation with polarized blue light showed no dependenceon the direction of light polarization. However, centrifugationof the protonemata followed by microbeam irradiation showedthat the site of blue light perception could be displaced togetherwith the nucleus. Centrifugal treatment changed the distributionof intracellular organelles at the time of light exposure andbasipetally displaced the nucleus about 90µm. This treatmenthad no effect on the induction of cell division with blue lightif the protonemata were centrifuged again acropetally afterthe light treatment. Microbeam (30x30 µm2) irradiationwith blue light of the apical 45–75 ßm region,the receptive site of blue light in non-centrifuged cell, didnot induce cell division. However, cell division was inducedby irradiation of the nucleus-containing region, indicatingthat the photoreceptive site was displaced together with thenucleus by the centrifugation. These results suggest that theblue light receptor regulating cell division in Adiantum protonematais not likely to be located on the plasma membrane. (Received February 20, 1986; Accepted May 27, 1986)  相似文献   

5.
An action spectrum between 250 and 800 nm for the inhibitionof red-light-induced germination of spores in the fern Pterisvittata was determined on the Okazaki Large Spectrograph. Theresultant spectrum showed prominent peaks of effectiveness atabout 370, 440 and 730 nm and a minor peak in the neighborhoodof 260 nm. Next, a brief red light irradiation was given immediatelyafter the monochromatic irradiation to cancel the inhibitoryeffect caused by simultaneously formed PR. This resulted ina complete disappearance of the peak at 730 nm and considerabledecrease of other peaks in the shorter wavelength region exceptat 260 nm. Further correction of the latter spectrum by consideringthe transmission spectrum of a spore coat revealed that 260nm light acted more effectively than lights of 370 and 440 nm.The inhibitory effect of UV light on spore germination was nullifiedby subsequent irradiation with red light for 24 h or darknessfor 48 h followed by a brief red irradiation, indicating thatthe inhibitory action of UV light was ascribable to a blue-ultraviolet light-absorbing pigment. 4Present address (KT) and permanent address (MF): Botany Department,Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan. (Received July 30, 1983; Accepted November 21, 1983)  相似文献   

6.
Single-celled protonemata of the fern Adiantum capillus-veneris, kept under continuous red light, grew with a very low rate of cell division, and the cell cycle was arrested in the early G1 phase. Cell division was induced by transferring the protonemata to the dark after various light treatments, and the duration of component phases in the cell cycle was determined by a continuous-labelling technique with 3H-thymidine. Blue light irradiation greatly reduced the duration of the G1 phase but did not affect that of other phases. The greater the fluence of blue light, the shorter was the duration of G1 phase was observed. In contrast, a brief exposure of red-light-grown protonemata to far-red light given immediately before the dark incubation showed no effect on the duration of G1 S and M phases but significantly extended that of the G2 phase. The effect of far-red light on the G2 phase was reversed by red light, and the effects of red and far-red light were repeatedly reversible. The progression in the M phase was shown by means of a time-lapse video system to be not at all influenced by any pre-irradiation described above.  相似文献   

7.
Summary Two-dimensional prothallia of Adiantum capillus-veneris always expanded in a plane which was at a right angle to any given direction of irradiation with continuous white light. The expansion began with a longitudinal division of the apical cell, in the filamentous protonema, and the orientation of the mitotic cell plate of this first longitudinal division as well as the subsequent divisions was always parallel to the direction of the incident light. When three irradiations with white light, interrupted by periods of darkness, were given, two transverse and one subsequent longitudinal division were induced. When the last two irradiations were given from the same direction, the cell plate of the first longitudinal division in most protonemata was oriented parallel to the direction of light. However, when the direction of light during the third irradiation was at right angle to that during the second, the frequency of the longitudinal division greatly decreased but that of the third transverse division increased. Thus, the orientation of the first longitudinal division appeared to be controlled in some way not only by the irradiation which actually induced the third division but also by that inducing the preceding transverse division, while the direction of light for the first transverse division had little effect on the orientation of the third division.  相似文献   

8.
When protonemata of Adiantum capillus-veneris L. which had been grown filamentously under continuous red light were transferred to continuous white light, the apical cell divided transversely twice, but the 3rd division was longitudinal. An intervening period of darkness lasting from 0 to 90 hr either between the 1st and the 2nd cell division or between the 2nd and the 3rd one did not affect the number of protonemata in which the 3rd cell division was longitudinal. The insertion of red light instead of darkness greatly decreased the percentage of 1st longitudinal divisions occurring at the 3rd division, and increased the number of transverse divisions. Fifty percent reduction of induction of 1st longitudinal division was caused by ca. 50 hr exposure to red light between 1st and 2nd division and by ca. 20 hr between 2nd and 3rd division, and total loss was induced by an exposure of ca. 100 hr or longer to red light in the former and by ca. 40 hr longer in the latter. Thus, by using an appropriate intervening dark period or exposure to red light, the orientation and timing of cell division could be controlled in apical cell of the fern protonemata.  相似文献   

9.
Wada M  Furuya M 《Plant physiology》1972,49(2):110-113
When filamentous protonemata of Adiantum capillus-veneris L. precultured under continuous red light were transferred to the dark, the apical cell divided about 24 to 36 hours thereafter. The time of the cell division was delayed for several hours by a brief exposure to far red light given before the dark incubation. The effect of far red light was reversed by a small dose of red light given immediately after the preceding far red light. The effects of red and far red light were repeatedly reversible, indicating that the timing of cell division was regulated by a phytochrome system. When a brief irradiation with blue light was given before the dark incubation, the cell division occurred after 17 to 26 hours in darkness. A similar red far red reversible effect was also observed in the timing of the blue light-induced cell division. Thus, the timing of cell division appeared to be controlled by phytochrome and a blue light-absorbing pigment.  相似文献   

10.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

11.
Inoue Y  Furuya M 《Plant physiology》1975,55(6):1098-1101
Action spectra for photoinduction of perithecia after different lengths of dark period were determined with apically growing mycelium of a sordariaceous fungus Gelasinospora reticulispora. When hyphae were exposed to monochromatic light in near ultraviolet and visible regions, reciprocity between intensity and exposure time was observed within the range of incident energy used. The resulting action spectrum determined after a dark period of 48 hours showed a peak at 460 nm with shoulders at 420 and 480 nm and another peak at 370 nm, indicating minima at 410, 430, and 470 nm. After 72 hours darkness the spectrum was very similar to the above, except that the major peak shifted to 450 nm and the near ultraviolet region was somewhat less effective. In both cases, wavelengths longer than 520 nm showed no effect.  相似文献   

12.
Summary A technique has been developed for the investigation of the photopigment involved in the photoperiodic control of reproduction in Japanese quail,Coturnix coturnix. When these photoreceptors were exposed to white or monochromatic light a clear relationship was found between light intensity and the extent of photo-induced luteinizing hormone (LH) secretion. A spectroradiometric investigation of the passage of light through the skull and brain enabled us to illuminate the hypothalamic region with equal numbers of photons at a range of wavelengths. Action spectra were then conducted and showed a photopigment with a peak sensitivity at wavelengths near 500 nm. An excellent match was obtained when the standard absorption spectrum for a rhodopsin was fitted to the action spectrum, suggesting a rhodopsin maximally sensitive at 492 nm. The absolute sensitivity of the photoreceptors was calculated at a range of wavelengths: with light at 500 nm, 2.85×10–12 E·cm–2·s–1 triggered the photoperiodic response. This level of sensitivity is matched only by the rhodopsin visual pigments.Abbreviations LH luteinizing hormone - T transmission  相似文献   

13.
A. Kadota  M. Wada  M. Furuya 《Planta》1985,165(1):30-36
Summary Perception of polarized light inducing phytochrome-mediated polarotropism in protonemata of the fern Adiantum capillus-veneris L. was analyzed using brief microbeam irradiation with polarized red (R) or far-red light (FR). The polarotropic response inducible by irradiation of the subapical 10–30-m part with polarized R vibrating parallel to the cell axis was nullified by subsequently giving R at the apical 0–2.5-m region. This inhibitory effect of R showed an action dichroism, that is, polarized R vibrating normal to the cell axis was effective but the parallel-vibrating R was not. On the other hand, FR irradiation of the extreme tip after irradiation of the whole cell with depolarized R effectively induced a tropic response. This FR effect also showed action dichroism, with parallel-vibrating polarized FR being more effective than FR vibrating normal to the cell axis. When the apical-dome region and the adjacent subapical 10–20-m region were sequentially irradiated with polarized R vibrating obliquely in different directions, polarotropism took place depending on the vibrating direction of the light given to the apical-dome region. Obliquely vibrating polarized FR given to the apical dome after irradiation of the whole cell with depolarized R also induced polarotropism. Thus, the difference in amount (or percent) of the far-redabsorbing form of phytochrome (Pfr) between the extreme tip and the subapical region appears to be crucial in regulating the direction of apical growth; the difference in Pfr level between the two sides of the protonemal apex may occur mainly at the apical dome. Furthermore, the transition moments of the red-absorbing form of phytochrome (Pr) and Pfr seem to be aligned parallel and normal, respectively, to the cell surface at the periphery of the apical hemisphere.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light  相似文献   

14.
Photoreactivation (PR) of T4 endonuclease-susceptible sites (ESS) and sister-chromatid exchanges induced by ultraviolet light was investigated in Potorous tridactylis Pt K2 cells, using monochromatic light from a grating monochromator. Both ESS and SCE showed maximum PR at 350 nm and the action spectra of PR essentially overlapped between ESS and SCE at 350, 400 and 450 nm. Exposure to 325-nm light after UV irradiation induced additional ESS and SCE, but reduction of ESS was shown by increasing exposure to 325-nm light, and further induction of SCE was observed by the same treatment. A possible difference in mechanisms between induction of ESS and SCE is suggested at 325 nm, while similar causes for ESS and SCE, presumably pyrimidine dimers, are suggested by UV (254-nm) irradiation.  相似文献   

15.
An action spectrum for light induced carotenogenesis in Verticillium agaricinum (Link) Corda (ATCC 24668) was obtained by exposing mycelial pads to monochromatic radiation. Action maxima occurred at 290 (main peak) and 390 nm, and there was a minor peak at 483 nm. The results also showed interaction between the blue and UV light. Blue light partly reversed the UV light induction of carotenogenesis when given after, but not when given before UV light. This implies that there are at least two photoreceptors involved in carotenogenesis in Verticillium , but phytochrome is not likely to be one of them.  相似文献   

16.
Summary Escherichia coli cells in which the recA promoter is fused to a lac structural gene, (Mu) Mud(Ap,lac)::rec, were irradiated with two far-ultraviolet light wavelengths (254 and 290 nm), selected monochromatic near-ultraviolet (NUV) wavelengths 313 nm, 334 nm, 365 nm, or broad band solar-UV (290–420 nm) from a solar simulator. Irradiation with the two far-ultraviolet wavelengths was followed by high yields of -galactosidase, lambda prophage induction, and Weigle reactivation. These end points were not observed after irradiation with the selected NUV wavelengths or the broad spectrum solar-UV. Thus, neither broad spectrum solar-UV nor monochromatic NUV wavelengths resulted in the derepression of the recA promoter. Further, prior exposure of the cells either to the selected monochromatic NUV wavelengths or to solar-UV inhibited (a) the induction of -galactosidase by subsequent 254-nm radiation, (b) subsequent 254-nm induction of lambda prophage, (c) Weigle reactivation, and (d) mutation frequency. These observations are consistent with the hypothesis that NUV blocks subsequent recA protease action. Offprint requests to: Ms. Susan Barr, Editor, Division of Biological and Medical Research, Argonne National Laboratory, Argonne, IL 60439, USA  相似文献   

17.
Germination of spores and elongation of protonemata of Adiantum capillus-veneris L., which can be controlled by light irradiation, were examined under various gravitational conditions including microgravity simulated by a three-dimensional clinostat. The elongation of protonemata that had been irradiated from below and grew downwards was greater than that of protonemata growing horizontally or upwards. Under microgravity, protonemata were shorter than the controls. Germination of spores, direction of growth, and cell division were not affected by gravitational conditions.  相似文献   

18.
Candida albicans produced chlamydospores after 24 h in the dark at 27 degrees C, but the process was inhibited under adequate irradiation of light. The in vivo absorption spectra showed a main peak at 414 nm, and less important peaks at 430, 446, 477, 519, 549 and 560 nm. No bands were detected beyond 600 nm. A total inhibition of chlamydosporulation occurred at 414 nm (monochromatic light) for an initial energy of 2,000 ergs cm-2 s-1. A 4,000 ergs cm-2 s-1 irradiation energy was necessary to observe a marked inhibition at 460, 500 and 530 nm (les chlamydospores and/or immaturity); this energy must be raised to 300,000 ergs cm-2 s-1 to observe a similar effect at 575 and 630 nm. Biological activity spectra were in full concordance with absorption spectra at 414 nm; no interpretation of absorption band at 460 nm is given, but total or partial inhibition could be explained by modulation of protoporphyrin activity.  相似文献   

19.
The first mitosis in spores of the fern A. capillus-veneris was observed under a microscope equipped with Nomarski optics with irradiation from a safelight at 900 nm, and under a fluorescent microscope after staining with 4[prime],6-diamidino-2-phenylindole. During imbibition the nucleus remained near one corner of each tetrahedron-shaped dormant spore, and asymmetric cell division occurred upon brief irradiation with red light. This red light-induced mitosis was photoreversibly prevented by subsequent brief exposure to far-red light and was photo-irreversibly prevented by brief irradiation with blue light. However, neither far-red nor blue light affected the germination rate when spores were irradiated after the first mitosis. Therefore, the first mitosis in the spores appears to be the crucial step for photoinduction of spore germination. Furthermore, experiments using a microbeam of red or blue light demonstrated that blue light was effective only when exposed to the nucleus, and no specific intracellular photoreceptive site for red light was found in the spores. Therefore, phytochrome in the far-red absorbing form induces the first mitosis in germinating spores but prevents the subsequent mitosis in protonemata, whereas a blue-light receptor prevents the former but induces the latter.  相似文献   

20.
An action spectrum for photoinduction of perithecial formationafter a prior 72 h dark growth period was determined in theUV region with apically growing mycelia of a sordariaceous fungus,Gelasinospora reticulispora. The spectrum exhibited a peak at280 nm. Quantum effectiveness of 280 nm irradiation was ca.1.7 times higher than that of 450 nm light. The number of peritheciainduced by UV radiation was saturated at a lower level as comparedwith blue light. UV radiation having a fluence greater thanthe saturation level decreased the number of induced perithecia.UV radiation that was given after a saturating exposure to inductiveblue light inhibited the inductive effect of blue light. Anaction spectrum for this inhibition exhibited a peak between260 and 270 nm. Monochromatic light beyond 350 nm had no inhibitoryeffect. Inhibitory effects of UV radiation given after inductiveblue light irradiation were observed in the fluence range wherephotoinductive effects of UV radiation became obvious. Therefore,the true height of the UV peak in the photoinduction actionspectrum,when free of distortion from the inhibitory effect, should behigher than the peak obtained in this study. (Received August 20, 1983; Accepted November 4, 1983)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号