首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the subcellular localization of sialidases in human lymphocytes from a patient with adult type sialidosis with partial β-galactosidase deficiency and normal controls. Sialidase activities were measured with α,2 → 3 NeuAc-lactitol, 4-methylumbelliferyl-NeuAc and GM3 ganglioside as substrates. Sialidases in the lysosomes were sonication-labile and hydrolyzed mainly hydrophilic substrates such as NeuAc-lactitol and 4-methylumbelliferyl-NeuAc, but hydrolyzed subsidiarily GM3 ganglioside. On the other hand, sialidases in the plasma membrane were sonication-stable and hydrolyzed both hydrophilic substrates and GM3 ganglioside. In sialidosis with partial β-galactosidase deficiency, the sialidases of the lysosomes showed 3–5% activity toward hydrophilic substrates and 25% activity toward GM3 ganglioside as compared with sialidase activities of the controls. However, there are no differences in the activities of the sialidases in the plasma membrane. These results demonstrate that the essential defect in this disease is the deficiency of a lysosomal sialidase.  相似文献   

2.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

3.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

4.
A rapid small-scale procedure was set up to obtain highly purified preparations of lysosomes and plasma membranes from the homogenate of cerebellar granule cells differentiated in culture. It consisted in a centrifugation of the postnuclear fraction P2, on a Percoll gradient with formation of an upper and lower band. The upper band, upon centrifugation on 1 M sucrose, produced a light band lying on the top, that constituted the plasma membrane preparation. The upper band constituted the lysosome preparation. The plasma membrane preparation exhibited a 6-fold relative specific activity increase of Na+, K(+)-ATPase and 5'-nucleotidase, with negligible contamination by other subcellular markers; the lysosomal preparation exhibited a 30-fold relative specific activity increase of beta-galactosidase and beta-hexosaminidase, with virtually no contamination by other subcellular markers. Both the lysosome and plasma membrane preparations carried sialidase activity on MUB-NeuNAc and ganglioside GD1a. The sialidase activity on GD1a required the presence of Triton X-100 in both subcellular preparations; the sialidase activity on MUB-NeuNAc was markedly activated by albumin only in the lysosomes. The lysosomal sialidase had a unique optimal pH value, 3.9. The plasma membrane sialidase featured two values of optimal pH, one at 3.9, for both substrates and second at 5.4 and 6.0 for MUB-NeuNAc and GD1a, respectively. It is concluded that cerebellar granule cells differentiated in vitro possess one lysosomal sialidase and two plasma membrane sialidases, all of them active on ganglioside.  相似文献   

5.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743–745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system.We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10?5 M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase.Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems.The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane missing data  相似文献   

6.
The subcellular distribution of ganglioside sialidase in Mucolipidosis IV (ML IV) cells was characterized by a series of Percoll gradients. Similar to normal cells, the enzyme cosedimented with plasma membrane markers, although this activity was reduced and exhibited decreased solubility in ML IV cells. Only trace amounts of ganglioside sialidase (less than 5%) was found in the lysosomes of normal cells. This activity was apparently reduced in ML IV cells but its minute activity in controls excluded further characterization of these differences. Plasma membranes on 6.7 and 5.6% Percoll gradients were biomodally distributed. Ganglioside sialidase in normal cells was found to be in both the heavier and the lighter membrane fractions, whereas the enzyme in ML IV cells was associated mainly with the denser membrane fraction. These data indicate that the enzyme in ML IV cells is characteristically different from normal in that it exhibits reduced activity and solubility and a different plasma membrane distribution.  相似文献   

7.
Radioactive gangliosides, N-[14C]-acetylneuraminylgalactosylglucosylceramide ([14C]GM3) and N- [14C]-acetylneuraminylgalactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl]-galactosylglucosylceramide ([14C]GD1a), were synthesized from CMP-[14C]sialic acid and the appropriate precursor glycolipid using specific sialyltransferase activities. These compounds were isolated and used as substrates to assay sialidase activity in HeLa cells. Although sodium butyrate added to the culture medium increased GM3 biosynthesis in HeLa cells, sialidase activity, as well as that of other glycohydrolases, was the same in control and butyrate-treated HeLa cells. The same sialidase activity appeared to hydrolyze both [14C]GM3 and [14C]GD1a, but not fetuin; the enzyme had a pH optimum of 5.0 and a Km of 75 μm for the ganglioside substrates. Although the cells contained a high sialidase activity (4–7 nmol/mg of protein/h) and could bind exogenously added [14C]GM3, no “ecto”-sialidase activity would be detected in intact cells under conditions where a close to physiological pH is maintained. The results indicate that ganglioside sialidase is not involved directly in the morphological and biochemical differentiation induced in HeLa cells by exposure to sodium butyrate.  相似文献   

8.
Sialidase activity in normal faecal extracts showed a preference for mucin-related glycoprotein and oligosaccharide substrates, but the presence of two or moreO-acetyl esters at positions C7–C9 on the sialic acids retarded the rate of hydrolysis. A specific sialateO-acetyl esterase was detected with a lower total activity relative to sialidase with mucin substrates and having a pH optimum of 7.8 and aK M of approximately 1mm sialateO-acetyl ester. A specific glycosulfatase activity was found in faecal extracts using the substrate lactit-[3H]ol 6-O-sulfate with a pH optimum of pH 5.0 and aK M of approximately 1mm.Faecal extracts from ulcerative colitis (UC) patients had higher sialateO-acetyl esterase and glycosulfatase activity, while mucin sialidase activity was unchanged.Metabolically labelled mucin isolated from UC patients contained less sulfate and had lower sialic acidO-acetylation compared with normal mucin. Colonic mucin was degraded more efficiently by faecal extracts from UC patients compared with normal extracts. The UC mucin was degraded more rapidly than the normal mucin by faecal enzyme extracts from both normal and UC subjects. Abbreviations: UC, ulcerative colitis; BSM, bovine submandibular gland mucin; PMSF, phenylmethylsulfonyl-fluoride. Sialic acids are abbreviated according to Schauer [37].  相似文献   

9.
Exposure to Hg2+ below 10 M destroys synaptosomal membrane-associated sialidase of bovine brain in situ. Inhibition by Cu2+ occurs only at relatively higher concentrations, and is demonstrable after the synaptosomal nembrane preparation has been presaturated with Cu2+. Pb2+ does not inhibit enzymatic activity. Hg2+ does not exert a significant effect on the free energy of association of monomeric brain gangliosides into aggregates, or on the stability of the aggregate forms, as estimated by ultracentrifugal analysis of the ion-independent moment of ganglioside micelles as a function of concentration. Hg2+ inhibits synaptic membrane sialidase acting both in situ on the native sialocompounds in the membrane, or on exogenous ganglioside. Kinetic analyses of the exogenous activity in membranes exposed to Hg2+ reveal loweredV max values but no substantial change inK m for synaptosomal membrane gangliosides. These findings suggest that the powerful inhibitory effect exerted by Hg2+ on nerve ending membrane sialidase is enzyme directed, not substrate directed. It may be postulated that part of the neurotoxic effect of low levels of Hg2+ stems from an interference with synaptic metabolism by the destruction of membrane-associated sialidase. This enzyme can serve the purpose of modulation of synaptic negative charge density by releasing bound, strongly anionic, sialic acid from highly concentrated sialocompounds in the membrane.Author to whom correspondence should be sent.  相似文献   

10.
SUBCELLULAR FRACTIONATION OF GANGLIOSIDE SIALIDASE FROM HUMAN BRAIN   总被引:1,自引:1,他引:0  
—A subcellular fractionation was performed on forebrain cortex from three human brains and the fractions obtained were assayed for ganglioside sialidase and four p-nitrophenyl glycohydrolases. Differences in the sedimentation patterns of the enzymes were observed. From 53 to 77 per cent of the recovered sialidase activity was found in the synaptosomal fraction, while the p-nitrophenyl glycosidases were mainly recovered in the lysosome-enriched fraction. Three possible interpretations of the sialidase sedimentation pattern are suggested: (1) The ganglioside sialidase is bound to the limiting membrane structure of the nerve ending. (2) The ganglioside sialidase is lysosomal, although bound to lysosomes of low density. (3) The enzyme occurs mainly in lysosomes primarily located in the nerve endings, being trapped under the formation of the synaptosomes.  相似文献   

11.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+-ATPase and the Mg2+-ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membranebound Mg2+-ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20°C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+-ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at ?20°C, which was characteristic of hepatoma plasma membrane Mg2+-ATPase. With solubilized Mg2+-ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+-ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at ?20°C.  相似文献   

12.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

13.
The protein pattern of leaf plasma membranes from Arabidopsis thaliana (L.) Landsberg erecta was analysed in order to detect changes induced by acute short-term ozone treatment. Plasma membranes were isolated 0, 3 and 8 h after the end of a 2 h fumigation of the plants with 500 nmol mol?1 of O3. Proteins extracted from plasma membranes were separated by high-performance two-dimensional polyacrylamide gel electrophoresis. Eight hours after the end of fumigation, one new protein appeared and the amounts of two other proteins increased significantly. The reported study is a first step towards the identification of plasmalemma proteins altered by ozone and to a more detailed characterization of structural changes occurring in the plasma membrane after ozone exposure.  相似文献   

14.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

15.
16.
Purified plasma membrane fractions were obtained from leaves of Picea abies L., Pinus sylvestris L., Fagus sylvatica L. and Quercus robur L., whereas plasma membranes from Pinus halepensis Mill, proved to be more difficult to obtain, perhaps due to the higher content of volatile substances in this plant species. Plasma membranes were purified by both phase partitioning and free-flow electrophoresis from microsomal fractions and identified on the basis of biochemical and in some cases morphological and cytochemical markers. Electron micrographs revealed that membrane vesicles from Pinus sylvestris exhibited a very clear dark-light-dark pattern and measurements of membrane thickness showed that it ranged from 6 to 10 nm. Most membranes were 8 nm thick and stained with phosphotungstic acid at low pH, both typical characteristics of the plasma membrane. Enzymatic identification of plasma membranes consisted in the determination of the vanadate-sensitive ATPase (EC 3.6.1.3) activity. The specific activity in the upper phase (U2) fraction was 10–25 times higher than those in the lower phase and microsomal fractions, depending on plant species. 1,3-β-glucan synthase II (EC 2.4.1.3), another putative plasma membrane marker, was not detected in the plasma membrane-enriched fractions of conifer needles and showed a very low specific activity in membranes of deciduous trees. Contamination by membranes of other origin was determined by analysis of membrane markers: cytochrome c oxidase (EC 1.9.3.1) for mitochondria, inosine diphosphatase (EC 3.6.1.6) for Golgi apparatus, cytochrome c reductase (EC 1.6.2.4) for endoplasmic reticulum, and pyrophosphatase (EC 3.6.1.1) for tonoplasts. The main, but relatively low contamination, was due to tonoplasts, as determined by the activity of pyrophosphatase. Plasma membrane characteristics were quite different depending on the season during which needles were taken. Membrane preparations of better quality were more easily obtained from samples taken during winter.  相似文献   

17.
Plasma membranes were isolated from murine plasmocytoma cells in culture, by a procedure involving lysis in hypoosmotic medium leaving the nuclei intact, and separation of surface membranes from the lysate constituents on a discontinuous sucrose gradient.The purity of the fractions was assessed by electron microscopy and by assaying enzymes for cross-contaminants. Phosphohydrolases, including the (Na+ + K+)-stimulated Mg2+-ATPase (EC 3.6.1.3) and 5′-nucleotidase (EC 3.1.3.5), were concentrated in the plasma membrane-rich fractions. These fractions were essentially free from NADH: cytochrome c reductase, lysosomes and mitochondrial membrane enzymes.  相似文献   

18.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

19.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

20.
ATP-dependent Ca2+ uptake distinct from that of the mitochondria is found in both plasma membrane and microsomal membranes of rat kidney. Activity attributed to these fractions is enhanced by ammonium oxalate and is apparently insensitive to NaN3. In contrast, rat kidney mitochondrial Ca2+ uptake is blocked by NaN3. The pH of optimal activity is significantly higher for the mitochondrial fraction. Microsomal membrane Ca2+ uptake differs from that of the plasma membrane. Microsomal membranes are four times as active as the plasma membrane at high (5 mM) ATP levels. Apparent Km values for Mg2+-ATP differ in the two preparations with a higher affinity for Mg2+-ATP found in the plasma membrane Ca2+ uptake activity of the plasma membrane preparation is readily inhibited by Na+. Sucrose gradient density fractionation indicates that the observed microsomal membrane Ca2+ pump activity is associated with membrane vesicles derived from the endoplasmic reticulum. Ca2+ pump activity of both plasma membrane and microsomal fraction is depressed din the adrenalectomized rat. This activity is not restored by a single natriuretic dose of aldosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号