首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at the trans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K(+) depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.  相似文献   

2.
Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the "ear" domain of the clathrin adaptor AP-1 gamma subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Delta), the major Gga protein, accentuates growth and alpha-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Delta or a deletion of the AP-1 beta subunit gene (apl2Delta) alone are phenotypically normal, but cells carrying both gga2Delta and apl2Delta are defective in growth, alpha-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.  相似文献   

3.
Clathrin-coated vesicles mediate endocytosis and transport between the trans-Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo and membranes. Two main types of clathrin adaptor act in TGN-endosome traffic: GGA proteins and the AP-1 complex. Here we characterize the relationship between GGA proteins, AP-1 and other TGN clathrin adaptors using live-cell and super-resolution microscopy in yeast. We present evidence that GGA proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PtdIns(4)P) levels at the TGN slow or uncouple AP-1 coat assembly from GGA coat assembly. Conversely, enhanced PtdIns(4)P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PtdIns(4)-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PtdIns(4)P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN.  相似文献   

4.
Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo   总被引:1,自引:0,他引:1  
The small GTP binding protein ARF has been implicated in budding clathrin-coated vesicles (CCVs) from Golgi and endosomal membranes. An arf1 synthetic lethal screen identified DRS2/SWA3 along with a clathrin heavy-chain conditional allele (chc1-5/swa5-1) and SWA2, encoding the yeast auxilin-like protein involved in uncoating CCVs. Drs2p/Swa3p is a P-type ATPase and a potential aminophospholipid translocase that localizes to the trans-Golgi network (TGN) in yeast. Genetic and phenotypic analyses of drs2Delta mutants suggested that Drs2p was required for clathrin function. To address a potential role for Drs2p in CCV formation from the TGN in vivo, we have performed epistasis analyses between drs2 and mutations that cause accumulation of distinct populations of post-Golgi vesicles. We find that Drs2p is required to form a specific class of secretory vesicles that accumulate when the actin cytoskeleton is disrupted. Accumulation of these vesicles also requires clathrin and is perturbed by mutation of AP-1, but not AP-2, AP-3, or GGA adaptins. Most of the accumulated vesicles are uncoated; however, clathrin coats can be partially stabilized on these vesicles by deletion of SWA2. These data provide the first in vivo evidence for an integral membrane protein requirement in forming CCVs.  相似文献   

5.
AP-2-containing clathrin coats assemble on mature lysosomes   总被引:5,自引:0,他引:5       下载免费PDF全文
《The Journal of cell biology》1996,135(6):1801-1814
Coat proteins appear to play a general role in intracellular protein trafficking by coordinating a membrane budding event with cargo selection. Here we show that the AP-2 adaptor, a clathrin-associated coat-protein complex that nucleates clathrin-coated vesicle formation at the cell surface, can also initiate the assembly of normal polyhedral clathrin coats on dense lysosomes under physiological conditions in vitro. Clathrin coat formation on lysosomes is temperature dependent, displays an absolute requirement for ATP, and occurs in both semi-intact cells and on purified lysosomes, suggesting that clathrin-coated vesicles might regulate retrograde membrane traffic out of the lysosomal compartment.  相似文献   

6.
The delivery of mannose 6-phosphate receptors carrying lysosomal hydrolases from the trans-Golgi network (TGN) to the endosomal system is mediated by selective incorporation of the receptor-hydrolase complexes into vesicular transport carriers (TCs) that are coated with clathrin and the adaptor proteins, GGA and AP-1. Previous electron microscopy (EM) and biochemical studies have shown that these TCs consist of spherical coated vesicles with a diameter of 60-100 nm. The use of fluorescent live cell imaging, however, has revealed that at least some of this transport relies on a subset of apparently larger and highly pleiomorphic carriers that detach from the TGN and translocate toward the peripheral cytoplasm until they meet with distally located endosomes. The ultrastructure of such long-range TCs has remained obscure because of the inability to examine by conventional EM the morphological details of rapidly moving organelles. The recent development of correlative light-EM has now allowed us to obtain ultrastructural 'snapshots' of these TCs immediately after their formation from the TGN in live cells. This approach has revealed that such carriers range from typical 60- to 100-nm clathrin-coated vesicles to larger, convoluted tubular-vesicular structures displaying several coated buds. We propose that this subset of TCs serve as vehicles for long-range distribution of biosynthetic or recycling cargo from the TGN to the peripheral endosomes.  相似文献   

7.
The classical view suggests that adaptor proteins of the clathrin coat mediate the sorting of cargo protein passengers into clathrin-coated pits and the recruitment of clathrin into budding areas in the donor membrane. In the present study, we provide biochemical and morphological evidence that the adaptor protein 1 (AP-1) adaptor of the trans-Golgi network clathrin interacts with microtubules. AP-1 in cytosolic extracts interacted with in vitro assembled microtubules, and these interactions were inhibited by ATP depletion of the extracts or in the presence of 5'-adenylylimidodiphosphate. An overexpressed gamma-subunit of the AP-1 complex associated with microtubules, suggesting that this subunit may mediate the interaction of AP-1 with the cytoskeleton. Purified AP-1 did not interact with purified microtubules, but interaction occurred when an isolated microtubule-associated protein fraction was added to the reaction mix. The gamma-adaptin subunit of AP-1 specifically co-immunoprecipitated with a microtubule-associated protein of type 1a from rat brain cytosol. This suggests that type 1a microtubule-associated protein may mediate the association of AP-1 with microtubules in the cytoplasm. The microtubule binding activity of AP-1 was markedly inhibited in cytosol of mitotic cells. By means of its interaction with microtubule-associated proteins, we propose novel roles for AP-1 adaptors in modulating the dynamics of the cytoskeleton, the stability and shape of coated organelles, and the loading of nascent AP-1-coated vesicles onto appropriate microtubular tracks.  相似文献   

8.
A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12 Delta and vps34 Delta, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10C(t) Delta p mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.  相似文献   

9.
The GGAs [Golgi-localised, γ-ear containing, ARF (ADP ribosylation factor)-binding proteins] and the AP-1 (adaptor protein-1) complex are both adaptors for clathrin-mediated intracellular trafficking, but their relationship to each other is unclear. We have used two complementary systems, HeLa cells and Drosophila Dmel2 cells, to investigate GGA and AP-1 function. Immunoelectron microscopy of endogenous AP-1 and GGA in Dmel2 cells shows that they are predominantly associated with distinct clathrin-coated structures. Depletion of either GGA or AP-1 by RNAi does not affect the incorporation of the other adaptor into clathrin-coated vesicles (CCVs), and the cargo protein GFP-LERP (green fluorescent protein-lysosomal enzyme receptor protein) is lost from CCVs only when both adaptors are depleted. Similar results were obtained using HeLa cells treated with siRNA to deplete all three GGAs simultaneously. AP-1 was still incorporated into CCVs after GGA depletion and vice versa, and both needed to be depleted for a robust inhibition of receptor-mediated sorting of lysosomal hydrolases. In contrast, downregulation of major histocompatibility complex (MHC) class I by HIV-1 Nef, which requires AP-1, was not affected by a triple GGA knockdown. Thus, our results indicate that the two adaptors can function independently of each other.  相似文献   

10.
Clathrin-coated vesicles (CCVs) play important roles in nutrient uptake, downregulation of signaling receptors, pathogen invasion and biogenesis of endosomes and lysosomes. Although detailed models for endocytic CCV formation have emerged, the process of CCV formation at the Golgi and endosomes has been less clear. Key to endocytic CCV formation are proteins containing related phosphoinositide-binding ENTH and ANTH domains. Now, recent studies have identified novel ENTH/ANTH proteins that participate in CCV-mediated traffic between the trans-Golgi Network (TGN) and endosomes and have defined a molecular basis for interaction with AP-1 and GGA adaptors in clathrin coats of the TGN/endosomes. Thus, ENTH/ANTH domain proteins appear to be universal elements in nucleation of clathrin coats.  相似文献   

11.
The two clathrin-associated adaptor complexes AP1 and AP2 are known to participate in the formation of clathrin-coated vesicles at the trans-Golgi network and at the plasma membrane. During this process adaptors are involved in the sequestration of vesicle cargo by binding to the sorting signals within the cytoplasmic domains of the cargo proteins and in the recruitment of the clathrin coat. After budding of the clathrin-coated vesicles, the clathrin and adaptors dissociate from the vesicles. Here we show that in vitro binding of AP2 to sorting signals, which is one of the initial steps in receptor-mediated endocytosis, is modulated by adaptor phosphorylation. AP2 was phosphorylated by incubating purified AP2 in the presence of ATP and dephosphorylated by incubation with alkaline phosphatase. Affinity for tyrosine-, leucine-based and noncanonical sorting motifs was 15-33 times higher for phosphorylated than for dephosphorylated AP2. Also the binding of AP2 to membranes was regulated by adaptor phosphorylation/dephosphorylation and was about 8-fold higher for phosphorylated than for dephosphorylated AP2. Moreover, AP2 isolated from cytosol is higher phosphorylated than membrane-extracted and exhibits a 5-fold higher binding affinity than AP2 extracted from membranes. Taken together these data point to a cycle of phosphorylation/dephosphorylation as a mechanism for regulating the reversible association of AP2 with membranes and sorting signals during the process of receptor-mediated endocytosis.  相似文献   

12.
The heterotetrameric adaptor complex 1 (AP-1) and the monomeric Golgi-localized, gamma ear-containing, Arf-binding (GGA) proteins are components of clathrin coats associated with the trans-Golgi network and endosomes. The carboxyl-terminal ear domains (or gamma-adaptin ear (GAE) domains) of two gamma-adaptin subunit isoforms of AP-1 and of the GGAs are structurally similar and bind to a common set of accessory proteins. In this study, we have systematically defined a core tetrapeptide motif PsiG(P/D/E)(Psi/L/M) (where Psi is an aromatic residue), which is responsible for the interactions of accessory proteins with GAE domains. The definition of this motif has allowed us to identify novel GAE-binding partners named NECAP and aftiphilin, which also contain clathrin-binding motifs. These findings shed light on the mechanism of accessory protein recruitment to trans-Golgi network and endosomal clathrin coats.  相似文献   

13.
Clathrin-coated vesicles mediate diverse processes such as nutrient uptake, downregulation of hormone receptors, formation of synaptic vesicles, virus entry, and transport of biosynthetic proteins to lysosomes. Cycles of coat assembly and disassembly are integral features of clathrin-mediated vesicular transport (Fig. 1a). Coat assembly involves recruitment of clathrin triskelia, adaptor complexes and other factors that influence coat assembly, cargo sequestration, membrane invagination and scission (Fig. 1a). Coat disassembly is thought to be essential for fusion of vesicles with target membranes and for recycling components of clathrin coats to the cytoplasm for further rounds of vesicle formation. In vitro, cytosolic heat-shock protein 70 (Hsp70) and the J-domain co-chaperone auxilin catalyse coat disassembly. However, a specific function of these factors in uncoating in vivo has not been demonstrated, leaving the physiological mechanism and significance of uncoating unclear. Here we report the identification and characterization of a Saccharomyces cerevisiae J-domain protein, Aux1. Inactivation of Aux1 results in accumulation of clathrin-coated vesicles, impaired cargo delivery, and an increased ratio of vesicle-associated to cytoplasmic clathrin. Our results demonstrate an in vivo uncoating function of a J domain co-chaperone and establish the physiological significance of uncoating in transport mediated by clathrin-coated vesicles.  相似文献   

14.
The effects of methods known to perturb endocytosis from clathrin- coated pits on the localization of clathrin and HA2 adaptors in HEp-2 carcinoma cells have been studied by immunofluorescence and ultrastructural immunogold microscopy, using internalization of transferrin as a functional assay. Potassium depletion, as well as incubation in hypertonic medium, remove membrane-associated clathrin lattices: flat clathrin lattices and coated pits from the plasma membrane, and clathrin-coated vesicles from the cytoplasm, as well as those budding from the TGN. In contrast, immunofluorescence microscopy using antibodies specific for the alpha- and beta-adaptins, respectively, and immunogold labeling of cryosections with anti-alpha- adaptin antibodies shows that under these conditions HA2 adaptors are aggregated at the plasma membrane to the same extent as in control cells. After reconstitution with isotonic K(+)-containing medium, adaptor aggregates and clathrin lattices colocalize at the plasma membrane as normally and internalization of transferrin resumes. Acidification of the cytosol affects neither clathrin nor HA2 adaptors as studied by immunofluorescence microscopy. However, quantitative ultrastructural observations reveal that acidification of the cytosol results in formation of heterogeneously sized and in average smaller clathrin-coated pits at the plasma membrane and buds on the TGN. Collectively, our observations indicate that the methods to perturb formation of clathrin-coated vesicles act by different mechanisms: acidification of the cytosol by affecting clathrin-coated membrane domains in a way that interferes with budding of clathrin-coated vesicles from the plasma membrane as well as from the TGN; potassium depletion and incubation in hypertonic medium by preventing clathrin and adaptors from interacting. Furthermore our observations show that adaptor aggregates can exist at the plasma membrane independent of clathrin lattices and raise the possibility that adaptor aggregates can form nucleation sites for clathrin lattices.  相似文献   

15.
Secretory granule (SG) maturation has been proposed to involve formation of clathrin-coated vesicles (CCVs) from immature SGs (ISGs). We tested the effect of inhibiting CCV budding by using the clathrin adaptor GGA (Golgi-associated, gamma-ear-containing, ADP-ribosylation factor-binding protein) on SG maturation in neuroendocrine cells. Overexpression of a truncated, GFP-tagged GGA, VHS (Vps27, Hrs, Stam)-GAT (GGA and target of myb (TOM))-GFP led to retention of MPR, VAMP4, and syntaxin 6 in mature SGs (MSGs), suggesting that CCV budding from ISGs is inhibited by the SG-localizing VHS-GAT-GFP. Furthermore, VHS-GAT-GFP-overexpression disrupts prohormone convertase 2 (PC2) autocatalytic cleavage, processing of secretogranin II to its product p18, and the correlation between PC2 and p18 levels. All these effects were not observed if full-length GGA1-GFP was overexpressed. Neither GGA1-GFP nor VHS-GAT-GFP perturbed SG protein budding from the TGN, or homotypic fusion of ISGs. Reducing GGA3 levels by using short interfering (si)RNA also led to VAMP4 retention in SGs, and inhibition of PC2 activity. Our results suggest that inhibition of CCV budding from ISGs downregulates the sorting from the ISGs and perturbs the intragranular activity of PC2.  相似文献   

16.
Secretory carrier membrane proteins (SCAMPs) are ubiquitous components of recycling vesicles that shuttle between the plasma membrane, endosomes, and the trans-Golgi complex. SCAMPs contain multiple N-terminal NPF repeats and four highly conserved transmembrane regions. NPF repeats often interact with EH domain proteins that function in budding of transport vesicles from the plasma membrane or the Golgi complex. We now show that the NPF repeats of SCAMP1 bind to two EH domain proteins, intersectin 1, which is involved in endocytic budding at the plasma membrane, and gamma-synergin, which may mediate the budding of vesicles in the trans-Golgi complex. Expression of SCAMP1 lacking the N-terminal NPF repeats potently inhibited transferrin uptake by endocytosis. Our data suggest that one of the functions of SCAMPs is to participate in endocytosis via a mechanism which may involve the recruitment of clathrin coats to the plasma membrane and the trans-Golgi network.  相似文献   

17.
Clathrin adaptor proteins are essential for clathrin-coated vesicle biogenesis, yet the mechanisms governing their recruitment and interactions remain incompletely defined. The clathrin adaptors Gga and AP-1 are now shown to be recruited sequentially to the trans-Golgi network in two waves of clathrin coat assembly, coupled by Pik1-mediated phosphatidylinositol-4-phosphate synthesis. These findings reveal mechanistic insights into the functional and regulatory relationships between these clathrin adaptors.  相似文献   

18.
The Golgi-associated gamma-adaptin-related ADP-ribosylation factor-binding proteins (GGAs) are critical components of the transport machinery that mediates the trafficking of the mannose 6-phosphate receptors and associated cargo from the trans-Golgi network to the endosomes. The GGAs colocalize in vivo with the clathrin adaptor protein AP-1 and bind to AP-1 in vitro, suggesting that the two proteins may cooperate in packaging the mannose 6-phosphate receptors into clathrin-coated vesicles at the trans-Golgi network. Here, we demonstrate that the sequence, (382)WNSF(385), in the hinge region of GGA1 mediates its interaction with the AP-1 gamma-ear. The Trp and Phe constitute critical amino acids in this interaction. The binding of Rabaptin5 to the AP-1 gamma-ear, which occurs through a FXXPhi motif, is inhibited by a peptide encoding the GGA1 (382)WNSF(385) sequence. Moreover, mutations in the AP-1 gamma-ear that abolish its interaction with Rabaptin5 also preclude its association with GGA1. These results suggest that the GGA1 WXXF-type and Rabaptin5 FXXPhi-type motifs bind to the same or highly overlapping sites in the AP-1 gamma-ear. This binding is modulated by residues adjacent to the core motifs.  相似文献   

19.
Calf-brain coated vesicles were incubated with ATP and a cytosol fraction. As much as 90% of the clathrin was selectively released within 10 min at 37 degrees C without detectable proteolysis. This uncoating process required the presence of both ATP and cytosol. Empty cages of clathrin could also be dissociated in a similar manner. A nonhydrolyzable analogue, 5'-adenylylimidodiphosphate (AMP-PNP), would not substitute for ATP. Clathrin was dissociated from coats in a form unable to reassemble into cages under standard conditions. These reactions may reflect a segment of a clathrin-coated vesicle cycle in which coats are removed from vesicles after budding.  相似文献   

20.
We have previously identified a novel family of proteins called the GGAs (Golgi-localized, gamma-ear-containing, ADP-ribosylation factor-binding proteins). These proteins consist of an NH(2)-terminal VHS domain, followed by a GAT domain, a variable domain, and a gamma-adaptin ear homology domain. Studies from our own laboratory and others, making use of both yeast and mammals cells, indicate that the GGAs facilitate trafficking from the trans-Golgi network to endosomes. Here we have further investigated the function of the GGAs. We find that GGA-deficient yeast are not only defective in vacuolar protein sorting but they are also impaired in their ability to process alpha-factor. Using deletion mutants and chimeras, we show that the VHS domain is required for GGA function and that the VHS domain from Vps27p will not substitute for the GGA VHS domain. In contrast, the gamma-adaptin ear homology domain contributes to GGA function but is not absolutely required, and full function can be restored by replacing the GGA ear domain with the gamma-adaptin ear domain. Deleting the gamma-adaptin gene together with the two GGA genes exacerbates the phenotype in yeast, suggesting that they function on parallel pathways. In mammalian cells, the association of GGAs with the membrane is extremely unstable, which may account for their absence from purified clathrin-coated vesicles. Double- and triple-labeling immunofluorescence experiments indicate that the GGAs and AP-1 are associated with distinct populations of clathrin-coated vesicles budding from the trans-Golgi network. Together with results from other studies, our findings suggest that the GGAs act as monomeric adaptors, with the four domains involved in cargo selection, membrane localization, clathrin binding, and accessory protein recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号