首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

2.
A quantitative analysis of malate dehydrogenase isozymes has been carried out in a hexaploid wheat Triticum aestivum variety Holdfast, a diploid rye Secale cereale variety King II, a series of seven addition lines each having the Holdfast wheat chromosome complement, and also a different homologous pair of King II rye chromosomes. In young shoots of three of these addition lines grown in a defined salts medium lacking sucrose, at least one isozyme activity was elevated. This did not occur in shoots grown in a medium containing 0.5% sucrose or in the Triticale possessing the full wheat and rye chromosomal complements grown in the absence of exogenous sucrose. On the basis of cellular localization and substrate inhibition studies, the particular isozyme activities enhanced by the rye chromosomes were indistinguishable from isozyme activities in Holdfast wheat and dissimilar to all malate dehydrogenase isozyme activities observed in King II rye. These results suggest that three different rye chromosomes produce gene products which can interact with the wheat malate dehydrogenase regulatory system.  相似文献   

3.
Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.  相似文献   

4.
Summary Previous C-banding analysis of wheat (Triticum aestivum)X rye (Secale cereale) hybrids regenerated from tissue culture revealed enlarged C-bands in some rye chromosomes, but the molecular nature of the change was not determined. In situ hybridization using two DNA probes containing repeated sequences from rye telomeric heterochromatin was conducted on these wheatX rye hybrids and their progeny to investigate the occurrence of amplification in repeated sequences. Clones pSC 74 and pSC 119, which contain sequences from the 480-bp and 120-bp repeated DNA families of rye, respectively, were used as probes. Amplification of 480-bp repeated sequences in the short arm telomere of chromosome 7R was detected in three wheatxrye hybrids and their progeny. The amplified 480-bp sequences were detected by an enlarged hybridization site for pSC 74 at the 7RS telomere, and by the appearance at this same telomeric site of an unlabeled, blue chromosome segment in an otherwise completely brown chromosome hybridizing entirely to the biotin-labeled pSC 119 probe. This variant form of chromosome 7R was not observed in several Chaupon plants, or in the other hybrids derived from the same embryos, indicating the origin of the change in tissue culture. The amplified sequences were inherited up to at least three generations. Deletions and translocations were also observed.Contribution No. 87-9-J, Kansas Agricultural Experiment Station, Kansas State University  相似文献   

5.
Rye DNA sequences renaturing with a C0t <0.02 mol·sec/l, are largely undigested by the restriction enzyme HindIII. These HindIII-spared sequences are mostly located in telomeric heterochromatin. When digested with EcoRI* and cloned into the EcoRI site of pBR 325, these sequences yielded clones of two classes when hybridized to a probe of rapidly renaturing DNA. One class contains a DNA sequence which is a major constituent of the telomeric heterochromatic blocks, while the other is a minor component of the highly repeated DNA of the genome. The major component was sequenced, its chromosomal distribution mapped using wheat-rye addition lines and its distribution in meiotic prophase nuclei determined. The minor component is present in significant amounts in wheat as well as in rye and is localized at the terminal heterochromatic regions of three rye chromosomes but not in the major blocks of heterochromatin.  相似文献   

6.
Summary Investigations were made on the rye chromosome constitution and on the presence of telomeric heterochromatin in rye chromosomes of the 26 most widely and 24 most narrowly adapted triticale strains. Among widely adapted lines, 22 (85%) had a complete rye genome and four triticales only had chromosomal R-D genome substitutions. Twenty-three (96%) of the 24 most narrowly adapted triticales had substitutions between the chromosomes of the R and D genomes. The most widely adapted triticales accumulated fewer modified rye chromosomes in comparison to narrowly adapted lines. They had from one to three rye chromosomes with heterochromatic deletions: 46% of widely adapted lines had two modified rye chromosomes; 34% had three modified rye chromosomes, and 19% had a single modified rye chromosome. In widely adapted strains, the 1R, 4R, 5R and 6R modified chromosomes were observed; they were present in 80%, 73%, 50% and 11% of the cases, respectively. The most narrowly adapted triticales had from two to four modified rye chromosomes: 58% of the strains had three modified rye chromosomes; 29% had four modified rye chromosomes and 12% had two modified rye chromosomes. The modified 4R and 5R chromosomes were present in all of these lines. The 1R (modified), 6R (modified) and 7R (modified) were found in 83%, 25% and 16%, respectively, of the narrowly adapted strains.Results support the previous observations (Pilch 1980b) that a wide adaptation of hexaploid triticales is associated with the presence of the full potential of rye genome, and that it is independent of the amount of telomeric heterochromatin possessed by rye chromosomes.  相似文献   

7.
Cakmak  I.  Derici  R.  Torun  B.  Tolay  I.  Braun  H.J.  Schlegel  R. 《Plant and Soil》1997,196(2):249-253
Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.  相似文献   

8.
Summary The spontaneous occurrence of chromosome breaks, deletions, and translocations in plant tissue cultures is well documented. This study investigated the usefulness of tissue culture as a method of introgressing alien genes into wheat. Wheat X rye hybrids were regenerated from embryo scutellar calli maintained in culture for 222 days. The regenerated seedlings then were treated with colchicine to produce amphidiploids (AABBDDRR). The karyotypes of ten amphidiploids were analyzed by C-banding to determine chromosome structural changes that occurred during tissue culture. Three wheat/rye and one wheat/wheat chromosome translocations, seven deletions, and five amplifications of heterochromatin bands of rye chromosomes were identified. One amphidiploid contained a reciprocal translocation between wheat chromosome 4D and rye chromosome 1R. Non-reciprocal translocations between 2B and 3R, and between an unidentified wheat chromosome and 2R, were found independently in two amphidiploids. An additional plant had a translocation between wheat chromosomes 6B and 5A. All deletions involving rye chromosomes were noted in all 10 amphidiploids. Twelve of the 13 breakpoints in chromosomes involved in translocations and deletions occurred in heterochromatin. Amplification of heterochromatin bands on 2RL and 7RL chromosome arms also was observed in five plants. These results indicate a high degree of chromosome structural change induced by tissue culture. Therefore, tissue culture may be a useful tool in alien gene introgression and manipulation of heterochromatin in triticale improvement.Contribution No. 84-188-J, Kansas Agricultural Experiment Station, Kansas State University. Research was supported by the Science and Education Administration of the U.S. Department of Agriculture under Grant No. 59-2201-1-1-639-0 from Competitive Research Grants Office to R.G.S.  相似文献   

9.
The DNAs of wheat and rye plants with rye B chromosomes have been compared with wheat, rye and oats DNAs by DNA/DNA hybridisation. The presence of DNA from B chromosomes made no significant difference to the proportion of repeated sequence DNA. The repeated sequence fractions of these cereal DNAs were quantitatively divided into eight different groups on the basis of the amount of DNA/DNA hybridisation occurring between the different DNAs. Rye A and B chromosomes contained similar proportions of three of the groups. These results, together with estimates of the thermal stabilities of all the renatured DNA duplexes suggest that rye B chromosome DNA is very similar to rye A chromosome DNA in the proportion and heterogeneity of its repeated sequences.  相似文献   

10.
Seven different mildew resistant wheat lines derived from crosses between triticale and bread wheat were examined by molecular cytogenetics and chromosome C-banding in order to determine their chromosomal composition. Genomic in situ hybridisation (GISH) showed the presence of rye germplasm in all the lines and identified three substitution lines, three double substitution lines and one addition-substitution line. C-banding identified rye chromosomes 1R and 4R in the addition-substitution line, rye chromosomes 1R and 6R in two substitution lines and 1R and 2R in the third line, and rye chromosome 1R in the three substitution lines. Two of the latter lines (7-102 and 7-169) contained a modified form of the chromosome; fluorescent in situ hybridisation (FISH) using five different repetitive DNA-probes showed a pericentric inversion of 1R in both lines. The breakpoints of the 1R inversion were between (1) the 5S rDNA site and the NOR-region on the satellite of the short arm, and (2) between two AAC(5) sites close to the centromere on the long arm. The role of the rye chromosomes in the mildew resistance, the utilisation of the inverted 1R and the significance of the lines in wheat breeding are discussed.  相似文献   

11.
Heterochromatin and highly repeated DNA sequences in rye (Secale cereale)   总被引:1,自引:0,他引:1  
Secale cereale DNA, of mean fragment length 500 bp, was fractionated by hydroxylapatite chromatography to allow recovery of a very rapidly renaturing fraction (C0t 0–0.02). This DNA fraction was shown to contain several families of highly repeated sequence DNA. Two highly repeated families were purified; (1) a fraction which renatured to a density of 1.701 g/ cc and comprised 2–4% of the total genome, and (2) polypyrimidine tract DNA which comprised 0.1% of the total genome. The 1.701 g/cc DNA consisted of short sequence repeat units (5–50 bp long) tandemly repeated in blocks 30 kb long, while a portion of the polypyrimidine tract DNA behaved as part of a much larger block of tandemly repeated sequences. The chromosomal location of these sequences was determined by the in situ hybridisation of radioactive, complementary RNA to root tip mitotic chromosomes and showed the 1.701 g/cc sequences to be largely limited to the telomeric blocks of heterochromatin, accounting for 25–50% of the DNA present in these parts of the chromosomes. The polypyrimidine tracts were distributed at interstitial locations with 20–30% of the sequences at three well defined sites. The combined distributions of the 1.701 g/cc DNA sequences and polypyrimidine tracts effectively individualised each rye chromosome thus providing a sensitive means of identifying these chromosomes. The B chromosomes present in Secale cereale cv. Unevita, did not show defined locations for the sequences analysed. — The data are discussed in terms of the structure of the rye genome and the generality of the observed genomic arrangement of highly repeated sequence DNA.  相似文献   

12.
The structure, copy number and chromosomal location of arrays of four families of highly repeated sequences have been investigated in representative species of the genus Secale. The four unrelated families, previously characterised in Secale cereale, have repeating units of 480, 610, 630 and 120 base pairs respectively. The following general conclusions can be drawn in addition to detailed knowledge of the sequence content of heterochromatin in each accession studied: (1) Every species is unique in its complement or chromosomal distribution or both of the four highly repeated sequence families. S. montanum and S. cereale accessions studied here show the same complement of repeated sequences, but they differ substantially in the amounts they contain of the 610 and 630 base pair (bp) families, and in the distribution over the chromosomes of the 480 bp family. The structure of the repeating unit is also different in many members of the 480 bp family in S. montanum. — (2) The substantial differences between species in the amounts of the most highly repeated DNA sequences exist in the absence of any such conspicuous differences in most other repeated sequences which were detected as fluorescent bands after restriction enzyme digestion and gel electrophoresis. — (3) Each of the different highly repeated families can exist independently of the other families, though all the families have telomeric sites. Also, in the outbreeding species, heteromorphisms are frequent, and are particularly conspicuous in hybridisation detecting the 480 bp sequence family. — (4) The association of the highly repeated sequences with heterochromatin, discussed in the accompanying paper is generally true for other species in the genus, and the lower amounts of heterochromatin in other Secale species compared to S. cereale are associated with lower amounts of specific families of highly repeated DNA sequences. — (5) Analysis of highly repeated sequence families is likely to provide an easy method of identification of new accessions of Secale.  相似文献   

13.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

14.
The origin and molecular structure of the midget chromosome that is retained in a common wheat with rye cytoplasm, were studied by using fluorescent in situ hybridization (FISH). FISH with biotinylated rye genomic DNA as a probe clearly showed that the midget chromosome had originated from certain part(s) of rye chromosome(s). The midget chromosome did not possess sequences similar to wheat rDNA nor to a rye telomeric sequence with a 350 bp repeat unit. However, another repetitive sequence (120 bp family) of rye was found to occur at one end of the midget chromosome. The telomeric repeat sequences from Arabidopsis thaliana cross-hybridized to both ends of the midget chromosome as well as to wheat chromosomes. From the results obtained in this and previous studies, it is assumed that the midget chromosome originated from part of a rye chromosome, most likely the centromeric region of chromosome 1R, and that the telomeric sequences were synthesized de novo.by R. Appels  相似文献   

15.
The B chromosome of Crepis capillaris was isolated from the standard chromosomes by microdissection, and the chromosomal DNA amplified using the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The PCR product was cloned and a Bspecific library created and characterised. Southern and in situ hybridisation analyses of the DOP-PCR product from microdissected B chromosomes confirmed that the B chromosome is composed mainly of sequences also present in the A chromosomes but lacks the main repeated DNA families located in the A-chromosomal heterochromatin. From 100 clones analysed, 12% of the generated B-chromosomal library was shown to be composed of dispersed repeats located in both the A and B chromosomes. No B-specific repeated sequence was detected. One of the most abundant repeated DNAs within the library, the family B134, was further characterised. Repeating units show a sequence similarity range from 69% to 90% and are characterised by their richness in (CA)n repeats. In situ hybridisation revealed that members of this family are dispersed throughout the A and B chromosomes but are more concentrated in the pericentromeric heterochromatin of the B, indicating that the molecular organization of B heterochromatin is different from that of the A chromosomes. Compared with the A chromosomes, the Bs contain about 20,000 copies per micron more of the B134 sequence. This indicates that B134 was amplified on the B chromosome after its origin. The B134 sequences in the B chromosomes have also diverged from those on the A chromosomes. Although the DNA composition of A and B chromosomes is similar, Bs are evolving separately from A chromosomes at the molecular level.  相似文献   

16.
The effect of telomere heterochromatin on metaphase I association of chromosome pair 1R of rye was analyzed in normal diploid plants of rye (2n=14) and in wheat-rye derivatives with the chromosome constitution (0–7)A(0–7)BRR (2n=20, 21 and 22). The C-banding pattern of 1R was variable between plants. In diploid rye the presence or absence of telomeric heterochromatin in 1R does not influence its meiotic pairing. However, in wheat-rye derivatives the presence of telomeric heterochromatin decreases chiasma frequency in the 1R bivalent. This cannot be attributed to interference of heterochromatin with chiasma terminalization. This effect of heterochromatin is most pronounced in heterozygous condition. In plants heterozygous for telomeric C-bands the reduction of pairing is stronger in the short arm than in the long arm of the 1R bivalent.  相似文献   

17.
Summary Wheat chromosomes of the primary winter hexaploid and octoploid triticales and of the parental durum and common wheat varieties were studied using morphometric analysis. The size of some heterochromatic segments was shown to change in triticale. Telomeric and intercalary C-bands both increased and decreased in size whereas centromeric bands only increased. The size variability of C-bands in triticale B-genome chromosomes decreased in most of the cases and increased only for several specific C-bands. The C-bands of homologous B-genome chromosomes changed in the same direction in both triticale forms. The changes in size of the C-bands found in R-genome chromosomes detected earlier in these triticale forms (Badaeva et al. 1986) were shown to coincide in their pattern with the size changes of C-bands in homeological B-genome chromosomes. Our data are indicative of regular, directed chromosomal changes in the triticale karyotype.  相似文献   

18.
Summary The meiotic behaviour of rye chromosomes 1R, 2R, 3R, 6R and 7R/4R of hexaploid triticale Cachirulo is analyzed using the C-banding technique. These chromosomes show different C-banding patterns and present different pairing levels at metaphase I. A decreasing effect of large telomeric heterochromatin bands on pairing is deduced from the following two main facts: i) The chromosome 7R/4R shows the highest pairing associated with the smallest amount of heterochromatin, ii) pairing levels of 2 R short arm and 3 R long arm which carry large telomeric bands are less than their respective long and short arms lacking telomeric heterochromatin. Possible desynaptic effects of heterochromatin are discussed although an asynaptic effect cannot be rejected.  相似文献   

19.
Repeated sequence DNA relationships in four cereal genomes   总被引:7,自引:0,他引:7  
The effect of DNA fragment size on the extent of hybridisation that occurs between repeated sequence DNAs from oats, barley, wheat and rye has been investigated. The extent of hybridisation is very dependent on fragment size, at least over the range of 200 to 1000 nucleotides. This is because only a fraction of each fragment forms duplex DNA during renaturation. From these results estimates of the proportions of repeated sequences of each of the cereal genomes that are homologous with repeated sequences in the other species have been determined and a phylogenetic tree of cereal evolution constructed on the basis of the repeated sequence DNA homologies. It is proposed that wheat and rye diverged after their common ancestor had diverged from the ancestor of barley. This was preceded by the divergence of the common ancestor of wheat, rye and barley and the ancestor of oats. Once introduced in Gramineae evolution most families of repeated sequences appear to have been maintained in all subsequently diverging species. — The repeated sequences of oats, barley, wheat and rye have been divided into Groups based upon their presence or absence in different species. Repeated sequences of related families are more closely related to one another within a species than between species. It is suggested that this is because repeated sequences have been involved in many rounds of amplification or quantitative change via unequal crossing over during species divergence in cereal evolution.  相似文献   

20.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号