首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive polymer nanotubules of 1,2-diaminobenzene (1,2-DAB) were prepared using a porous polycarbonate membrane template, placed on a Pt foil and used to support the polymer, then, the electropolymerisation was performed by chronocoulometry. The obtained conductive polymer nanostructures were then placed on Pt electrode and used to support highly dispersed prussian blue (PB), which acts as the active component for H2O2 detection. The observed good stability of PB as catalyst of H2O2 was related to the presence of organic non-conventional conducting polymers in a composite nanostructured film. These nanostructured polymer/PB composite films were also characterised by scanning electron microscopy (SEM) and Raman spectroscopy. The non-conventional conducting polymer nanotubules/PB modified Pt electrodes were tested by cyclic voltammeter for stability at different pH values, then, by amperometry, for hydrogen peroxide, ascorbic acid, acetaminophen, uric acid and acetylcholine. Glucose oxidase (GOD), lactate oxidase (LOD), L-amino acid oxidase (L-AAOD), alcohol oxidase (AOD), glycerol-3-phosphate oxidase (GPO), lysine oxidase (LyOx), and choline oxidase (ChOx) were immobilised on PB layer supported on 1,2-diaminobenzene (1,2-DAB) nanotubules onto the Pt electrodes. Different strategies for enzyme immobilisation were performed and used. Analytical parameters such as reproducibility, interference rejection, response time, storage and operational stability of the sensors have been studied and optimised. Results provide a guide to design high sensitive, stable and interference-free biosensors. The glucose biosensors assembled with nanostructured poly(1,2-DAB) showed a detection limit of 5 x 10(-5) mol l(-1), a wide linearity range (5 x 10(-5) to 5 x 10(-3) mol l(-1)), a high selectivity, a stability of 3 months at 4 degrees C, and at least 4 weeks at room temperature. Similar analytical parameters and stability were also studied for L-(+)-lactic acid, L-leucine, ethanol, glycerol-3-phosphate, lysine, and choline biosensors.  相似文献   

2.
Gold (Au) and platinum (Pt) screen-printed electrodes were modified with Prussian Blue (PB) for the development of amperometric sensors selective for hydrogen peroxide detection. The sensors exhibited sensitivities towards H(2)O(2) equal to 2 A M(-1) cm(-2) for Au and 1 A M(-1) cm(-2) for Pt electrodes. The sensors were also employed as the basis for construction of glucose biosensors through further modification with crystallised glucose oxidase immobilised in a Nafion membrane. In order to improve the operational stability of the modified electrodes a buffer solution containing tetrabutylammonium toluene-4-sulfonate was used. The long-term performance of the sensors and biosensors were evaluated by continuous monitoring of hydrogen peroxide and glucose solutions (50 microM and 1 mM, respectively) in the flow-injection mode for 10 h.  相似文献   

3.
A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated.  相似文献   

4.
Novel planar glucose biosensors to be used for continuous monitoring have been developed. The electrodes are produced with the "screen printing" technique, and present a high degree of reproducibility together with a low cost and the possibility of mass production. Prior to enzyme immobilisation, electrodes are chemically modified with ferric hexacyanoferrate (Prussian Blue). This allows the detection of the hydrogen peroxide produced by the enzymatic reaction catalysed by GOD, at low applied potential (ca. 0.0 V versus Ag/AgCl), highly limiting any electrochemical interferences. The layer of Prussian Blue (PB) showed a high stability at the working conditions (pH 7.4) and also after 1 year of storage dry at RT, no loss of activity was observed. The assembled glucose biosensors, showed high sensitivity towards glucose together with a long-term operational and storage stability. In a continuous flow system, with all the analytical parameters optimised, the glucose biosensors detected glucose concentration as low as 0.025 mM with a linear range up to 1.0mM. These probes were also tested over 50-60 h in a continuous flow mode to evaluate their operational stability. A 0.5 mM concentration of glucose was continuously fluxed into a biosensor wall-jet cell and the current due to the hydrogen peroxide reduction was continuously monitored. After 50-60 h, the drift of the signal observed was around 30%. Because of their high stability, these sensors suggest the possibility of using such biosensors, in conjunction with a microdialysis probe, for a continuous monitoring of glucose for clinical purposes.  相似文献   

5.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

6.
Hypericin is a photosensitizing plant pigment from Hypericum perforatum with multiple modes of light-induced biological activities due to production of singlet oxygen and/or excited-state proton transfer with consequent pH drop in the hypericin environment. In the present work, we studied the effects of three inhibitors of crucial mechanisms responsible for intracellular pH (pHi) regulation on hypericin phototoxicity: N-ethylmaleimide (NEM), an inhibitor of H+-ATPase, 5'-(N,N-dimethyl)-amiloride (DMA), an inhibitor of Na+/H+ exchanger, and omeprazole (OME), an inhibitor of H+K+-ATPase. Our experiments show that the effect of hypericin at 1 x 10(-5) and 1 x 10(-6) mol x l(-1) was significantly potentiated by NEM (1 x 10(-7)-1 x 10(--9) mol x l(-1)) and DMA (1 x 10(-6) and 1 x 10(-7) mol x l(-1)) in leukemic CEM cell line. On the other hand, OME had no significant effect on hypericin cytotoxicity. Our results support the hypothesis that the excited-state proton transfer and the consequent acidification of hypericin environment could play a role in the biological activity of hypericin.  相似文献   

7.
Lactate detection plays a significant role in healthcare, food industries and is specially necessitated in conditions like hemorrhage, respiratory failure, hepatic disease, sepsis and tissue hypoxia. Conventional methods for lactate determination are not accurate and fast so this accelerated the need of sensitive biosensors for high-throughput screening of lactate in different samples. This review focuses on applications and developments of various electrochemical biosensors based on lactate detection as lactate being essential metabolite in anaerobic metabolic pathway. A comparative study to summarize the L-lactate biosensors on the basis of different analytical properties in terms of fabrication, sensitivity, detection limit, linearity, response time and storage stability has been done. It also addresses the merits and demerits of current enzyme based lactate biosensors. Lactate biosensors are of two main types – lactate oxidase (LOD) and lactate dehydrogenase (LDH) based. Different supports tried for manufacturing lactate biosensors include membranes, polymeric matrices-conducting or non-conducting, transparent gel matrix, hydrogel supports, screen printed electrodes and nanoparticles. All the examples in these support categories have been aptly discussed. Finally this review encompasses the conclusion and future emerging prospects of lactate sensors.  相似文献   

8.
The pH effect of pyrrole electropolymerization in the presence of glucose oxidase (GODx) on the performance and characteristic of galvanostatically fabricated glucose oxidase/polypyrrole (Ppy) biosensor is reported. Preparing the GODx/Ppy biosensors in 0.1 M KCl saline solution with various pH containing 0.05 M pyrrole monomer and 0.5 mg/ml GODx at 382 microA/cm2 current density for 100 mC/cm2 film thickness, both the galvanostatic responses and characteristics of these resulted biosensors were obtained. The results revealed that the galvanostatic glucose biosensor fabricated at neutral pH condition exhibited much higher sensitivity than those fabricated at lower or higher pH conditions, and had a good linearity form zero to 10 mM glucose with the sensitivity of 7 nA/mM. Finally, the long-term stability and the kinetic parameters, Michaelis constant and maximum current, of this biosensor were also reported.  相似文献   

9.
Long Y  Chen J  Zhang Z  Yao S 《Journal of biotechnology》2003,105(1-2):105-116
Real-time investigation of the interaction between primaquine phosphate and bovine serum albumin by the piezoelectric quartz crystal impedance (PQCI) analysis was carried out for the first time. Three kinds of electrodes were investigated. Compared with bare gold (Au) electrode, the gold electrode self-assembled of nanogold colloids exhibits maintained biocompatibility, increased capacity and more bioactivity. Additionally, on the basis of the multi-dimensional information provided by the PQCI analysis, the real-time interaction information and the kinetics of the binding process was investigated and a response model was deduced. At 37 degrees C, the binding rate (k1), dissociation rate (k(-1)) and equilibrium constants (Ka) were 4.19x10(2) (mol l(-1))(-1) s(-1), 1.01x10(-3) s(-1) and 4.15x10(5) (mol l(-1))(-1) for the electrode modified by nanogold particles; 3.83x10(2) (mol l(-1))(-1) s(-1), 9.70x10(-4) s(-1) and 3.95x10(5) (mol l(-1))(-1) for the bare gold electrode, respectively.  相似文献   

10.
The amperometric biosensors based on carbon paste electrodes (CPEs) encrusted with single microreactor (MR) have been constructed for the determination of glucose. The MRs were prepared from CPC-silica carrier (CPC) and were loaded with glucose oxidase (GO), mediator (M) and acceptor (A). As the mediator cation radical of 5,10-dimethyl-5, 10-dihydrophenazine (DMDHP), N-methylphenazonium methyl sulfate (PMS) and o-benzoquinone (BQ) and as the acceptor Fe[EDTA]- or Fe(CN)6(3-) was used. The biosensors acted at electrode potential 0.15-0.27 V versus Ag-AgCl electrode. The calibration graphs of the biosensors were linear in the range from 1.5 to 50 mM of glucose. The sensitivity of the biosensors did not change at pH 6-8. The dissolved oxygen little (7%) influenced the biosensors response and 1 mM of ascorbic acid produced the response that was of equal value to 0.5 mM of glucose. The biosensors showed high stability; no change of the response of the biosensors prepared by using the novel microreactor was observed at least for 6 months by keeping the loaded CPC at room temperature in silica container. An optimization of the biosensors response against the GO, the mediator and the polymer amount was performed. The digital modeling of the biosensors action is following.  相似文献   

11.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

12.
Capillary zone electrophoresis was employed for the determination of midecamycin using an end-column amperometric detection with a carbon fiber micro-disk bundle electrode at a constant potential of +1.15 V vs. saturated calomel electrode. The optimum conditions of separation and detection are 1.00x10(-3) mol l(-1) Na(2)HPO(4)-3.49x10(-4) mol l(-1) NaOH (pH 11.4) for the buffer solution, 20 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, respectively. The limit of detection is 5.0x10(-7) mol l(-1) or 0.41 fmol (S/N=3). The linear range of the calibration curve is 1.00x10(-6)-1.00x10(-3) mol l(-1). The relative standard deviation is 1.4% for the migration time and 4.9% for the electrophoretic peak current. The method could be applied to the determination of midecamycin in human urine. In this case, a separation voltage of 14 kV was used.  相似文献   

13.
A polymer-modified sonochemically fabricated glucose oxidase microelectrode array with microelectrode population densities of up to 2.5 x 10(5) microelectrodes per square centimetres is reported. These microelectrode sensors were formed by first depositing an insulating film on commercial screen printed electrodes which was subsequently sonicated to form cavities of regular sizes in the film. Electropolymerisation of aniline at the microelectrode cavities formed polyaniline protrusions containing entrapped glucose oxidase. Chemical deposition of polysiloxane from dichlorodimethysilane was used to deposit a thin protective and diffusion mass transport controlling coating over the electrodes. The physical and electrochemical properties of these films were studied. The performance of the final glucose oxidase based microelectrode sensor array is reported.  相似文献   

14.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

15.
A simple method for determination of perphenazine by capillary zone electrophoresis with amperometric detection is described. The optimum conditions of separation and detection are 1.50 x 10(-3) mol/l Na(2)B(4)O(7)-1.0 x 10(-3) mol/l NaOH (pH 9.9) for the buffer solution, 18 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, and 0.80 V versus saturated calomel electrode for the detection potential, respectively. The limit of detection is 5.0 x 10(-8) mol/l or 44 amol (S/N=3). The linear range of the calibration curve is 1.00 x 10(-7) to 1.00 x 10(-4) mol/l. The relative standard deviation is 1.5% for the migration time and 2.9% for the electrophoretic current at peak maximum. The method is applied to the determination of perphenazine in human urine.  相似文献   

16.
Direct electron transfer of hemoglobin (Hb) can be achieved in a Hb/montmorillonite (MMT)/polyvinyl alcohol multi-assembly at a pyrolytic graphite (PG) electrode. Accordingly, a novel nitric oxide (NO) biosensor is proposed. The reduction of NO is observed at a potential of approximately -783 mV (vs. SCE) at pH 5.5. At optimum pH, this biosensor shows a wide linear range of 1.0x10(-6)-2.5x10(-4) mol/l with a detection limit of 5.0x10(-7) mol/l. The sensor-to-sensor reproducibility is good consideringmacr; a relative standard deviation of 3.5% in five independent determinations at 5.0x10(-5) mol/l NO. The modified electrode is conveniently constructed and durable in long-term operations.  相似文献   

17.
Electropolymerization of Meldola Blue was carried out by cyclic voltammetry in the range from -0.6 to +1.4 V vs. Ag/AgCl, thus defining a new immobilization procedure of the phenoxazine mediator on screen-printed graphite electrodes. Evidence of polymer formation was provided by electrochemical and Fourier transform infrared spectroscopy (FTIR) data. Following polymerization, Meldola Blue preserved the ability to catalyze NADH oxidation allowing to achieve a detection limit of 2.5 x 10(-6) mol l(-1) and a sensitivity of 3713 microA l mol(-1) in amperometric determinations at 0 V vs. Ag/AgCl. In addition, the polymeric mediator was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase. Typical calibration at -0.1 V vs. Ag/AgCl shows a detection limit of 8.5 x 10(-5) mol l(-1), a sensitivity of 494 microA l mol(-1) and a linear range from 2.5 x 10(-4) to 5 x 10(-3) mol l(-1) hydrogen peroxide.  相似文献   

18.
In the present study, we explored the effect of the progestin medrogestone on the sulfatase and sulfotransferase activities in the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. After 24 h incubation at 37 degrees C of physiological concentrations of estrone sulfate ([3H]-E1S: 5x10(-9) mol/l), it was observed that this estrogen was converted in a great proportion to E2 in both cell lines. Medrogestone significantly inhibits this transformation, at all the concentrations tested (5x10(-8) to 5x10(-5) mol/l), in both cell lines. The IC50 values were 1.93 micromol/l and 0.21 micromol/l in MCF-7 and T-47D cells, respectively. In another series of studies, after 24 h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5x10(-9) mol/l), the sulfotransferase activity was detectable in both cell lines. Estrogen sulfates (ES) are found exclusively in the culture medium, which suggests that as soon as they are formed they are excreted into the medium. Medrogestone has a biphasic effect on sulfotransferase activity in both cell lines. At low doses: 5x10(-8) and 5x10(-7) mol/l, this compound stimulates the enzyme by +73.5 and 52.7%, respectively, in MCF-7, and by 84.5 and 62.6% in T-47D cells. At high concentrations: 5x10(-6) and 5x10(-5) mol/l, medrogestone has no effect on MCF-7 cells, but inhibits the sulfotransferase activity in T-47D cells by -31.4% at 5x10(-5) mol/l. In conclusion, the inhibitory effect provoked by medrogestone on the enzyme involved in the biosynthesis of E2 (sulfatase pathway) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive ES, support a probable anti-proliferative effect of this progestin in breast tissue. Clinical applications of these findings can open new therapeutic possibilities for this disease.  相似文献   

19.
Capillary zone electrophoresis was employed for the determination of lactate using end-column amperometric detection at a carbon fiber bundle microdisk electrode. The optimum conditions of separation and detection are 3.6 x 10(-3) mol/l Na(2)HPO(4)-1.4 x 10(-3) mol/l NaH(2)PO (pH 7.2) for the buffer solution, 18 kV for the separation voltage and 1.60 V versus the saturated calomel electrode for the detection potential. The limit of detection is 7.6 x 10(-7) mol/l or 1.7 fmol (S/N=3) and the linear range is 1.7 x 10(-6)-8.2 x 10(-4) mol/l for the injection voltage of 6 kV and injection time of 5 s. The RSD is 1.8% for the migration time and 3.3% for the electrophoretic peak current. The method was applied to the determination of lactate in human saliva. The recovery of the method is between 95 and 109%.  相似文献   

20.
1. The haemocyanin of the left-handed whelk Busycon contrarium (Conrad) exists largely as six or more multi-decameric aggregates characterized by sedimentation coefficients of approximately 105S, 132S, 155S, 170S, 185S and about 200-220S. 2. These aggregates represent di- to hepta- or octa-decameric assemblies of the basic haemocyanin decamer having a mol. wt of 4.3 x 10(6)-4.5 x 10(6). 3. The fully dissociated subunits in 8.0 M urea (pH 8.5) and at pH 11.1, 0.01 M EDTA have mol. wts of 4.78 x 10(5) and 4.62 x 10(5), close to one-tenth of the mol. wt of the basic decameric unit of most gastropod haemocyanins. 4. The pH dependence of the mol. wts (Mw), studied by light-scattering at the constant protein concentration of 0.010%, exhibit bell-shaped pH transition profiles with mol. wt values of about 16 x 10(6) in the presence of 0.01 M Mg2+, in the pH region from about pH 4.5-8.0; in the absence of stabilizing divalent ions the observed mol. wt is about 10 x 10(6) at pH 4.5-7.0. Below pH 4.5 and above 7.0-8.0 there is a sharp drop in mol. wt to about 4 x 10(5)-4.5 x 10(5). 5. The transition profiles observed with both the urea and salt series of probes investigated at concentration = 0.010% are found to produce aggregation at low reagent concentrations with mol. wt changes from about 9 x 10(6)-12 x 10(6)-14 x 10(6), followed by a decrease in mol. wt below 4.3 x 10(6)-4.5 x 10(6) of the haemocyanin decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号