首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During growth of Bdellovibrio bacteriovorus on Escherichia coli, there was a marked preferential use of E. coli phosphorus over exogenous orthophosphate even though the latter permeated into the intraperiplasmic space where the bdellovibrio was growing. This preferential use occurred to an equal extent for lipid phosphorus and nucleic acid phosphorus. Exogenous thymidine-5'-monophosphate competed effectively with [3H]thymine residues of E. coli as a precursor for bdellovibrio deoxyribonucleic acid; exogenous thymidine competed less effectively and thymine and uridine not at all. A mixture of exogenous nucleoside-5'-monophosphates equilibrated effectively with E. coli phosphorus as a phosphorus source for B. bacteriovorus; the nucleotide phosphorus entered preferentially into bdellovibrio nucleic acids. A comparable mixture of exogenous nucleosides plus orthophosphate had only a small effect on utilization of E. coli phosphorus by B. bacteriovorus, as did orthophosphate alone. A mixture of exogenous deoxyriboside monophosphates equilibrium effectively with E. coli phosphorus as a phosphorus source for bdellovibrio growth; the phosphorus from this source entered preferentially into deoxyribonucleic acid. These data show that nucleoside monophosphates derived from the substrate organism are utilized directly for n-cleic acid biosynthesis by B. bacteriovorus growing intraperiplasmically. As a consequence, the phosphate ester bonds preexisting in the nucleic acids of the substrate organism are conserved by the bdellovibrio, presumably lessening its energy requirement for intraperiplasmic growth. The data also suggest, but do not prove, that the phosphate ester bonds of phospholipids are also conserved.  相似文献   

2.
The lipid A components of substrate cell origin incorporated by Bdellovibrio bacteriovorus during intraperiplasmic growth (D. R. Nelson and S. C. Rittenberg, J. Bacteriol. 147:860-868, 1981) were shown to be integrated into its lipopolysaccharide structure. Lipid A isolated from bdellovibrios grown on Escherichia coli was resolved into two fractions by thin-layer chromatography. Fraction 2 had the same Rf as the single lipid A fraction of axenicaly grown bdellovibrios, and both stained identically with aniline-diphenylamine reagent. Fraction 1 resembled, in Rf and staining reaction, the slower migrating of two lipid A fractions obtained from the E.coli used as the substrate cell. Both fractions 1 and 2 contained glucosamine, a substrate cell-derived compound. Greater than 65% of the fatty acids in fraction 1 were derived from the substrate cell, whereas more than 60% of the fatty acids of fraction 2 were synthesized by the bdellovibrio. Nevertheless, each fraction contained significant amounts of fatty acid of both origins. The substrate cell-derived fatty acids had the same distribution of N-acyl and O-acyl linkages as in E. coli lipid A. The data indicate that the two lipid A moieties in lipopolysaccharide of intraperiplasmically grown bdellovibrios are hybrids of substrate cell-derived and bdellovibrio-synthesized components. The data also suggest that disaccharide units and N- and O-acyl linkages preexisting in the substrate cell lipid A may be conserved. A possible explanation for the unequal distribution of substrate cell-derived material in the two lipid A fractions of the bdellovibrio is suggested.  相似文献   

3.
The Y-ATP (energy efficiency) of intraperiplasmic growth of Bdellovibrio bacteriovorus was determined from the distribution of radioactivity of the substrate organism ([U-14C]Escherichia coli) btween CO2 and bdellovibrio cells at the end of growth. A "best" Y-ATP value of 18.5 was obtained from single growth cycle experiments and an average value of 25.9 from multicycle experiments. Both values are much higher than the usual value of 10.5 for bacteria growing in rich media. The bases for the unusual energy efficiency for growth of B. bacteriovorus are discussed.  相似文献   

4.
The composition of Bdellovibrio bacteriovorus lipopolysaccharide (LPS) was determined for cells grown axenically and intraperiplasmically on Escherichia coli or Pseudomonas putida. The LPS of axenically grown bdellovibrios contained glucose and fucosamine as the only detectable neutral sugar and amino sugar, and nonadecenoic acid (19:1) as the predominant fatty acid. Additional fatty acids, heptose, ketodeoxyoctoic acid, and phosphate were also detected. LPS from bdellovibrios grown intraperiplasmically contained components characteristic of both axenically grown bdellovibrios and the substrate cells. Substrate cell-derived LPS fatty acids made up the majority of the bdellovibrio LPS fatty acids and were present in about the same proportions as in the substrate cell LPS. Glucosamine derived from E. coli LPS amounted to about one-third of the hexosamine residues in intraperiplasmically grown bdellovibrio LPS. However, galactose, characteristic of the E. coli outer core and O antigen, was not detected in the bdellovibrio LPS, suggesting that only lipid A components of the substrate cell were incorporated. Substrate cell-derived and bdellovibrio-synthesized LPS materials were conserved in the B. bacteriovorus outer membrane for at least two cycles of intraperiplasmic growth. When bdellovibrios were grown on two different substrate cells successively, lipid A components were taken up from the second while the components incorporated from the lipid A of the first were conserved in the bdellovibrio LPS. The data show that substrate cell lipid A components were incorporated into B. bacteriovorus lipid A during intraperiplasmic growth with little or no change, and that these components, fatty acids and hexosamines, comprised a substantial portion of bdellovibrio lipid A.  相似文献   

5.
During the initial stages of intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the peptidoglycan of the E. coli becomes acylated with long-chain fatty acids, primarily palmitic acid (60%) and oleic acid (20%). The attachment of the fatty acids to the peptidoglycan involves a carboxylic-ester bond, i.e., they were removed by treatment with alkaline hydroxylamine. Their linkage to the peptidoglycan does not involve a protein molecule. When the bdelloplast peptidoglycan was digested with lysozyme, the fatty acid-containing split products behaved as lipopeptidoglycan, i.e., they were extracted into the organic phase of 1-butanol:acetic acid:water (4:15) two-phase system; all of the lysozyme split products generated from normal E. coli peptidoglycan were extracted into the water phase. It is suggested that the function of the acylation reaction is to help stabilize the bdelloplast outer membrane against osmotic forces. In addition, a model is presented to explain how a bdellovibrio penetrates, stabilizes, and lyses a substrate cell.  相似文献   

6.
During growth of Bdellovibrio bacteriovorus on (2-14C)uracil-labeled Escherichia coli approximately 50% of the radioactivity is incorporated by the bdellovibrio and most of the remainder is released as free nucleic acid bases. Kinetic studies showed that 50 and 30S ribosomal particles and 23 and 16S ribosomal ribonucleic acid (RNA) of E. coli are almost completely degraded by the first 90 min in a 210- to 240-min bdellovibrio developmental cycle. Synthesis of bdellovibrio ribosomal RNA was first detected after 90 min. The specific activity and the ratio of radioactivity in the bases of the synthesized bdellovibrio RNA was essentially the same as those of the substrate E. coli. The total radioactivity of the bdellovibrio deoxyribonucleic acid (DNA) exceeded that in the DNA of the substrate E. coli cell, and the ratio of radioactivity of cytosine to thymine residues differed. Intraperiplasmic growth of B. bacteriovorus in the presence of added nucleoside monophosphates (singly or in combination) significantly decreased the uptake of radioactivity from (2-14C)uracil-labeled E. coli; nucleosides or nucleic acid bases did not. It is concluded that the RNA of the substrate cell, in the form of nucleoside monophosphates, is the major or exclusive precursor of the bdellovirbrio RNA and also serves as a precursor for some of the bdellovibrio DNA.  相似文献   

7.
During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J, the substrate cell surface becomes more hydrophobic. This was shown (i) by comparing the sensitivity to hydrophobic antibiotics of wild-type and lipopolysaccharide mutant strains of Salmonella typhimurium to that of the bdellovibrio growing on these strains and (ii) by measuring the binding efficiency of these strains, Escherichia coli, and their derived bdelloplasts to octyl Sepharose. The kinetics of increase in surface hydrophobicity was similar to the kinetics of the conversion of the substrate cell peptidoglycan to a lysozyme-resistant form (M. Thomashow and S. Rittenberg, J. Bacteriol. 135:1008-1014, 1978), and hydrophobicity reached a maximum at about 60 min in a synchronous culture. The change in hydrophobicity was inhibited by chloramphenicol, suggesting that bdellovibrio protein synthesis was required. Control experiments revealed that the free-swimming bdellovibrio had a more hydrophobic surface than the deep rough mutants of S. typhimurium.  相似文献   

8.
大豆根瘤菌蛭弧菌的发现   总被引:2,自引:0,他引:2  
  相似文献   

9.
Ten bacteriophages that attack and lyse saprophytic strains of Bdellovibrio bacteriovorus were isolated. Morphological, serological, and host-range studies revealed that there were four different bdellovibrio phages present among the isolates. One of the phages lysed a strain of B. bacteriovorus that requires the presence of a suitable bacterial host for growth. The phage attached to the bdellovibrio cells in the absence of the bacterial host cells; lysis occurred only in the presence of host cells. The 19 saprophytic bdellovibrio strains employed in the phage host-range studies were grouped on the basis of their susceptibility to phage lysis.  相似文献   

10.
During growth of Bdellovibrio bacteriovorus on [2-14C]deoxythymidine-labeled Escherichia coli, approximately 30% of the radioactivity was released to the culture fluid as nucleoside monophosphates and free bases; the remainder was incorporated by the bdellovibrio. By 60 min after bdellovibrio attack, when only 10% of the E. coli deoxyribonucleic acid (DNA) had been solubilized, the substrate cell DNA was degraded to 5 X 10(5)-dalton fragments retained within the bdelloplast. Kinetic studies showed these fragments were formed as the result of sequential accumulation of single- and then double-strand cuts. DNA fragments between 2 X 10(3) and 5 X 10(5) daltons were never observed. Chloramphenicol, added at various times after initiation of bdellovibrio intraperiplasmic growth on normal or on heated E. coli, which have inactivated deoxyribonucleases, inhibited further breakdown and solubilization of substrate cell DNA. Analysis of these intraperiplasmic culture deoxyribonuclease activities showed that bdellovibrio deoxyribonucleases are synthesized while E. coli nucleases are inactivated. It is concluded that continuous and sequential synthesis of bdellovibrio deoxyribonucleases of apparently differing specificities is necessary for complete breakdown and solubilization of substrate cell DNA, and that substrate cell deoxyribonucleases are not involved in any significant way in the degradation process.  相似文献   

11.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

12.
The aim of our study was to obtain data for the molecular characterization of bdellovibrio bacteria, which were recently split into the genus Bdellovibrio and the newly designated genus Bacteriovorax. We determined the 16S rDNA sequences of five reference strains and performed a phylogenetic analysis including published 16S rRNA sequences of bdellovibrios. A comparison of the secondary structure showed significant differences in two regions of the 16S rRNAs of the species Bdellovibrio bacteriovorus, Bacteriovorax starrii, and Bacteriovorax stolpii. In addition, ribotyping techniques gave specific hybridization patterns and revealed that two rRNA operons are present in the investigated strains. A hybridization probe derived from the genetic locus hit, associated with the host independent (HI) phenotype of B. bacteriovorus, was found to be specific for this species. Sequence comparison of the hit locus revealed few base pair changes between host independent (HI) and host dependent (HD) strains. Ribotyping and hybridization experiments using the hit probe were applied to characterize bdellovibrio strains isolated from the gut of animals and humans and one isolate from sewage.  相似文献   

13.
Measurements of the sucrose-permeable and -impermeable volumes during Bdellovibrio bacteriovorus attack on Escherichia coli or Pseudomonas putida showed that the volume of the bdelloplast increased over that of the substrate cell. Although the pattern of the increase differed with the two organisms, the volumes reached maximum at about 60 min into the bdellovibrio growth cycle. By this time, the cytoplasmic membranes of the attacked cells were completely permeable to sucrose. The kinetics of increase in sucrosepermeable volumes were similar to the kinetics of attachment and penetration (Varon and Shilo, J. Bacteriol. 95:744-753, 1968). These data show that the original cytoplasmic and periplasmic compartmentalization of the substrate cell ceases to exist with respect to small hydrophilic molecules during bdellovibrio attack. In contrast, the effective pore size of the outer membrane of the substrate cell to small oligosaccharides remains unaltered during bdelloplast formation as was shown by direct measurements of its exclusion limits. The major porin protein of E. coli, OmpF, was recoverable from the bdelloplast outer membrane fraction until the onset of lysis. The Braun lipoprotein was removed from the bdelloplast wall early, and OmpA was lost in the terminal part of the bdellovibrio growth cycle.  相似文献   

14.
Facultatively Parasitic Strain of Bdellovibrio bacteriovorus   总被引:22,自引:18,他引:4       下载免费PDF全文
A strain of Bdellovibrio bacteriovorus (designated strain UKi2) was isolated which was capable of growing either saprophytically in host-free medium or endoparasitically in Escherichia coli B/r. It was quantitatively determined that each bdellovibrio could develop in solid medium to produce a colony, and 65% of the cells in a late exponential-phase culture were capable of inducing E. coli B/r spheroplasts. A photomicrographic sequence of single E. coli spheroplasts containing bdellovibrios demonstrated that parasitically derived B. bacteriovorus UKi2 could develop saprophytically after release from the host cells. Strain UKi2 appears to be morphologically quite similar to previously described obligately parasitic bdellovibrios; biochemical data on this strain suggests its close relationship to some of the previously described host-independent strains of Bdellovibrio.  相似文献   

15.
The intraperiplasmic growth rate and cell yield of wild-type Bdellovibrio bacteriovorus 109J, growing on Escherichia coli of normal composition as the substrate, were not markedly inhibited by 10-3 M methotrexate (4-amino-N10-methylpteroylglutamic acid). In contrast, the growth rate and cell yield of the mutant 109Ja, growing axenically in 0.5% yeast extract +0.15% peptone, were strongly inhibited by 10-4 and 10-3 M methotrexate. Thymine, thymidine, and thymidine-5'-monophosphate, in increasing order of effectiveness, partially or completely reversed the inhibition. E. coli depleted of tetrahydrofolate and having an abnormally high protein/deoxyribonucleic acid (DNA) ratio was obtained by growing it in the presence of methotrexate. B. bacteriovourus grew at a normal rate on these depleted E. coli cells but with somewhat reduced cell yield. Mexthotrexate (10-3 M) inhibited intraperiplasmic growth of bdellovibrio on the depleted E. coli somewhat more than it inhibited growth on normal E. coli, but the effects were small compared with inhibition of axenic growth of the mutant. Total bdellovibrio DNA after growth on the depleted E. coli in the presence or absence of methotrexate exceeded the initial quanity of E. coli DNA present. Thymidine-5'-monophosphate (10-3 M) largely reversed the inhibition and increased the amount of net synthesis of DNA. The data are consistent with the prediction that intraperiplasmic growth of B. bacteriovorus should be insensitive to all metabolic inhibitors that act by specifically preventing synthesis of essential monomers. The data also indicate that B. bacteriovorus possesses thymidylate synthetase, thymidine phosphorylase, and thymidine kinase, and has the potential to carry out de novo DNA synthesis from non-DNA precursors during intraperiplasmic growth. The results also suggest that methionyl tRNAfMet is not required for initiation of protein synthesis by B. bacteriovorus.  相似文献   

16.
When cells of either Bdellovibrio bacteriovorus 109J or Bdellovibrio stolpii UKi2 were subjected to osmotic shock by treatment with sucrose-EDTA and MgCl2 solutions, only trace amounts of proteins or enzyme activities were released into the shock fluid. In contrast, when nongrowing cells were converted to motile, osmotically stable, peptidoglycan-free spheroplasts by penicillin treatment, numerous proteins were released into the suspending fluid. For both species, this suspending fluid contained substantial levels of 5'-nucleotidase, purine phosphorylase, and deoxyribose-phosphate aldolase. Penicillin treatment also released aminoendopeptidase N from B. bacteriovorus, but not from B. stolpii. Penicillin treatment did not cause release of cytoplasmic enzymes such as malate dehydrogenase. The data indicated that bdellovibrios possess periplasmic enzymes or peripheral enzymes associated with the cell wall complex. During intraperiplasmic bdellovibrio growth, periplasmic and cytoplasmic enzymes of the Escherichia coli substrate cell were not released upon formation of the spherical bdelloplast during bdellovibrio penetration. Most of the E. coli enzymes were retained within the bdelloplast until later in the growth cycle, when they became inactivated or released into the suspending buffer or both.  相似文献   

17.
Fatty acids derived from Micrococcus cerificans growing at the expense of odd- and even-carbon normal alkanes were studied. Results demonstrated that cultures grown with a variety of nonhydrocarbon substrates serving as sole carbon and energy source yielded only even-carbon fatty acids. Even-chain alkanes, dodecane through octadecane serving as sole carbon source, resulted in even-carbon fatty acids with direct correlation between carbon number of the major fatty acid species and carbon number of the alkane substrate. Odd-carbon alkanes, undecane through heptadecane serving as sole carbon source, yielded both odd- and even-carbon fatty acids. A transitional shift from even-carbon fatty acids to odd-carbon fatty acids was observed as the carbon number of the alkane substrate increased. Unsaturated fatty acids were found to comprise a significant percentage of all profiles. Analysis of unsaturated fatty acids showed all odd- and even-carbon acids analyzed were Delta(9) monounsaturated fatty acids.  相似文献   

18.
Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked.  相似文献   

19.
D M Logan  R Battistella 《Steroids》1985,45(5):433-445
The concentrations of cholesterol esters in tissues of dystrophic chicken embryos are altered from normal. These changes are accompanied by significant changes in the proportions of the esterified fatty acids (the fatty acid profile). In serum and pectoral muscles there is a shift to a higher proportion of unsaturated fatty acids (in particular 18:1). Thigh muscle esters are little changed and in liver and brain the proportion of unsaturated fatty acids decreases.  相似文献   

20.
Antarctic notothenioid fishes possess large lipid stores that are important fuels for aerobic metabolism. Oxidative muscle tissues of these animals oxidize long-chain mono-unsaturated fatty acids more readily than saturated fatty acids. The mechanistic basis(es) for the substrate specificity of their fatty acid-oxidizing pathway is unknown. We examined the substrate specificity of fatty acyl coenzyme A synthetase (FACS) to determine whether the enzyme contributes to targeting unsaturated fatty acids for preferential transport into mitochondria as fuels for beta-oxidation. Maximal activities of FACS were measured in isolated mitochondria from Notothenia coriiceps and Chaenocephalus aceratus oxidative skeletal muscles in the presence of fatty acids differing in chain lengths and degrees of unsaturation. With the exception of C(22:6), maximal activities were greater with unsaturated substrates than with C(16:0), a saturated fatty acid. Monoenoic fatty acids did not produce the highest activities. Predicted amino acid sequences of FACS from Antarctic C. aceratus, Gobionotothen gibberifrons, and N. coriiceps and sub-Antarctic Notothenia angustata and Eleginops maclovinus were determined to identify amino acid candidates that may be important for determining the substrate specificity of FACS. Substitutions cysteine548 and polar threonine552 within the putative fatty acid binding pocket may contribute to preference for unsaturated fatty acyl substrates compared to saturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号