首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

2.
C57BL/6 mice deficient in E- and P-selectin (E(-/-)P(-/-)) kept under specific pathogen-free barrier conditions have high circulating neutrophil counts and develop hypercellular cervical lymph nodes with substantial plasma cell infiltrates, severe ulcerative dermatitis, conjunctivitis, and lung pathology, which eventually lead to premature death. To test the hypothesis that the pathology in E(-/-)P(-/-) mice may be caused by dysfunctional lymphocyte activity, we crossed E(-/-)P(-/-) mice with recombination activation gene (Rag)-1(-/-) mice to generate E(-/-)P(-/-)Rag-1(-/-) mice lacking mature T and B lymphocytes. E(-/-)P(-/-)Rag-1(-/-) mice had circulating neutrophil counts and plasma G-CSF levels similar to E(-/-)P(-/-) mice. Remarkably, none of the E(-/-)P(-/-)Rag-1(-/-) mice developed conjunctivitis or ulcerative dermatitis typical of E(-/-)P(-/-) mice. These mice were overall healthier in appearance than E(-/-)P(-/-) mice, and histopathologic changes in the lung were reduced. Cervical lymph nodes in E(-/-)P(-/-)Rag-1(-/-) mice were much smaller than those of E(-/-)P(-/-) mice, containing few mononuclear cells and no plasma cells. These data show that the severe disease phenotype of E(-/-)P(-/-) mice depends on lymphocyte function. We conclude that a dysregulated immune response in E(-/-)P(-/-) mice causes disease development, but is not necessary for elevated neutrophil counts.  相似文献   

3.
In the previous study, we generated mice lacking thromboxane A2 receptor (TP) and apolipoprotein E, apoE(-/-)TP(-/-) mice, and reported that the double knockout mice developed markedly smaller atherosclerotic lesions than those in apoE(-/-) mice. To investigate the mechanism responsible for reduced atherosclerosis in apoE(-/-)TP(-/-) mice, we examined the role of TP in bone marrow (BM)-derived cells in the development of the atherosclerotic lesions. When we compared the function of macrophages in apoE(-/-) and in apoE(-/-)TP(-/-) mouse in vitro, there was no difference in the expression levels of cytokines and chemokines after stimulation with lipopolysaccharide. We then transplanted the BM from either apoE(-/-) or apoE(-/-)TP(-/-) mice to either apoE(-/-) or apoE(-/-)TP(-/-) mice after sublethal irradiation. After 12 weeks with high fat diet, we analyzed the atherosclerotic lesion of aortic sinus. When the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-) mice, the lesion size was almost the same as that of apoE(-/-) mice without BM transplantation. In contrast, when the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-)TP(-/-) mice, the lesion size was markedly reduced. These results indicate that the protection of atherogenesis in TP(-/-) mice is not associated with TP in BM-derived cells.  相似文献   

4.
Triepel  J.  Mader  J.  Weindl  A.  Heinrich  D.  Forssmann  W. G.  Metz  J. 《Histochemistry and cell biology》1984,81(6):509-516
Summary The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus.The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.Abbreviations abl nucleus amygdaloideus basalis lateralis - abm nucleus amygdaloideus basalis medialis - acc nucleus amygdaloideus centralis - aco nucleus amygdaloideus corticalis - ahp area posterior hypothalami - ala nucleus amygdaloideus lateralis anterior - alp nucleus amygdaloideus lateralis posterior - ame nucleus amygdaloideus medialis - atv area tegmentalis ventralis - bst nucleus proprius striae terminalis - CA commissura anterior - CC corpus callosum - cgld corpus geniculatum laterale dorsale - cglv corpus geniculatum laterale ventrale - cgm corpus geniculatum mediale - CHO chiasma opticum - CI capsula interna - co nucleus commissuralis - cod nucleus cochlearis dorsalis - cp nucleus caudatus/Putamen - cs colliculus superior - cu nucleus cuneatus - dmh nucleus dorsomedialis hypothalami - DP decussatio pyramidum - em eminentia mediana - ent cortex entorhinalis - epi epiphysis - FLM fasciculus longitudinalis medialis - fm nucleus paraventricularis hypothalami pars filiformis - FX fornix - gd gyrus dentatus - gp globus pallidus - gr nucleus gracilis - hl nucleus habenulae lateralis - hm nucleus habenulae medialis - hpe hippocampus - ift nucleus infratrigeminalis - io oliva inferior - ip nucleus interpeduncularis - LM lemniscus medialis - MT tractus mamillo-thalamicus - na nucleus arcuatus - nls nucleus lateralis septi - nms nucleus medialis septi - npca nucleus proprius commissurae anterioris - ns nucleus solitarius - n III nucleus nervi oculomotorii - nt V nucleus tractus spinalis nervi trigemini - ntm nucleus mesencephalicus nervi trigemini - osc organum subcommissurale - P tractus cortico-spinalis - PC pedunculus cerebri - PCI pedunculus cerebellaris inferior - pir cortex piriformis - pol area praeoptica lateralis - pom area praeoptica medialis - prt area praetectalis - pt nucleus parataenialis - pvh nucleus paraventricularis hypothalami - pvt nucleus paraventricularis thalami - r nucleus ruber - re nucleus reuniens - rgi nucleus reticularis gigantocellularis - rl nucleus reticularis lateralis - rm nucleus raphe magnus - ro nucleus raphe obscurus - rp nucleus raphe pallidus - rpc nucleus reticularis parvocellularis - rpgc nucleus reticularis paragigantocellularis - sch nucleus suprachiasmaticus - SM stria medullaris thalami - snc substantia nigra compacta - snl substantia nigra lateralis - snr substantia nigra reticularis - ST stria terminalis - tad nucleus anterior dorsalis thalami - tam nucleus anterior medialis thalami - tav nucleus anterior ventralis thalami - tbl nucleus tuberolateralis - tc nucleus centralis thalami - tl nucleus lateralis thalami - tmd nucleus medialis dorsalis thalami - TO tractus opticus - TOL tractus olfactorium lateralis - tpo nucleus posterior thalami - tr nucleus reticularis thalami - trs nucleus triangularis septi - TS tractus solitarius - TS V tractus spinalis nervi trigemini - tvl nucleus ventrolateralis thalami - vmh nucleus ventromedialis hypothalami - vh ventral horn, Columna anterior - zi zona incerta Supported by the Deutsche Forschungsgesellschaft (DFG) SFB 90, Carvas  相似文献   

5.
Racemic 2-aryl-2-methoxypropionic acids were enantioresolved by the use of (S)-(-)-phenylalaninol 4. For instance, racemic 2-methoxy-2-phenylpropionic acid (+/-)-7 was condensed with phenylalaninol (S)-(-)-4 yielding a diastereomeric mixture of amides, which was easily separated by HPLC on silica gel affording the first-eluted amide (-)-13a and the second-eluted amide (+)-13b: alpha = 3.19, Rs = 3.49. The absolute configuration of amide (-)-13a was determined to be (R;S) by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-13a was converted to oxazoline (R;S)-(-)-14a, from which enantiopure 2-methoxy-2-phenylpropionic acid (R)-(-)-7 was recovered. Other 2-aryl-2-methoxypropionic acids, (R)-(-)-8, (R)-(-)-9, (R)-(+)-10, (R)-(-)-11, and (R)-(-)-12, were similarly prepared in enantiopure forms with the use of phenylalaninol (S)-(-)-4, and their absolute configurations were clearly determined by X-ray crystallography or by chemical correlation.  相似文献   

6.
The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process.  相似文献   

7.
We isolated 15 mutants of Pseudomonas aeruginosa PAO which were defective in the formation of certain extracellular proteins, such as elastase, staphylolytic enzyme, and lipase ( Xcp mutants). The mutations were mapped on the chromosome by conjugation and transduction. The locations were xcp -1 near 0', with the gene order cys-59- xcp -1- proB , and loci xcp -2, xcp -3, and xcp -31 at 35', with the gene order trpC , D- xcp -3/ xcp -31- xcp -2- argC . Loci xcp -4 and xcp -41 through xcp -44 were cotransducible with proA at 40'; loci xcp -5, xcp -51, xcp -52, and xcp53 were located at 55', with the gene order leu-10- trpF -met-9010- xcp -53- xcp -5/ xcp -51/ xcp+ ++-52, and xcp -6 was located at 65' to 70', between catA and mtu-9002. Nine mutations ( xcp -2, xcp -3, xcp -31, xcp -4, and xcp -41 through xcp -45) caused decreased production of extracellular enzymes. Six strains with mutations xcp -1, xcp -5, xcp -51, xcp -52, xcp -53, and xcp -6 produced cell-bound exoproteins and had defective release mechanisms. The regulation of production of alkaline phosphatase and phospholipase C is different from other exoproteins , such as elastase, but they all seem to share a common release mechanism. Alkaline protease had separate mechanisms for regulation and release, since this protease was found in culture supernatants of all but one of the mutants, and none of the strains had cell-bound enzyme.  相似文献   

8.
Two new yellow pigments, germitosone and methylgermitorosone, were isolated from the seedling of Cassia torosa. The structures of these substances were established as 3,7 dimethyl - 6 - methoxy - 1 - oxo - 2,3,8,9 - tetrahydroxy - 1,2,3,4 - tetrahydroanthracene and 6,9 dimethoxy - 3,7 - dimethyl - 1 - oxo - 2,3,8 - trihydroxy - 1,2,3,4 - tetrahydroanthracene respectively.  相似文献   

9.
We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Lepp?nen et al., Biochemistry, 36, 13729-13735, 1997).  相似文献   

10.
Glycogen debranching enzyme (GDE) degrades glycogen in concert with glycogen phosphorylase. GDE has two distinct active sites for maltooligosaccharide transferase and amylo-1,6-glucosidase activities. Phosphorylase limit dextrin from glycogen is debranched by cooperation of the two activities. Fluorogenic branched dextrins were prepared as substrates of GDE from pyridylaminated maltooctaose (PA-maltooctaose) and maltotetraose, taking advantage of the synthetic action of Klebsiella pneumoniae pullulanase. Their structures were as follows: Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4GlcPA (B3), Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B4), Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5), Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B6), Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B7), and Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B8). These dextrins were incubated with porcine skeletal muscle GDE. No fluorogenic product was found in the digest of B8. The fluorogenic products from B3, B4, and B5 were PA-maltooctaose only. PA-maltooctaose, PA-maltoundecaose, and 6(7)-O-alpha-glucosyl-PA-maltooctaose were from B7. PA-maltooctaose and 6(6)-O-alpha-glucosyl-PA-maltooctaose were from B6. These results indicate that the maltooligosaccharide transferase removed the maltotriosyl residues from the maltotetraosyl branches by hydrolysis or intramolecular transglycosylation to expose 6-O-alpha-glucosyl residues, and then the amylo-1,6-glucosidase hydrolyzed the alpha-1,6-glycosidic linkages of the products rapidly. Probably, 6-O-alpha-glucosyl-PA-maltooctaoses from B7 and B6 were less susceptible to the amylo-1,6-glucosidase than were those from B3, B4, and B5. Taking this into account, B3, B4, and B5 are suitable substrates for GDE assay.  相似文献   

11.
This review considers the synthetic possibilities of monoterpene ketones, such as (R)-(+)- and (S)-(-)-pulegones, (-)-menthone, (R)-(-)- and (S)-(+)-carvones, (2R,5S)-dihydrocarvone, (S)-(+)- and (R)-(-)-camphors, (R)-(-)-nopinone, (R)-(+)- and (S)-(-)-verbenones by the examples of synthesis of optically pure and enantiomerically enriched insect pheromones.  相似文献   

12.
T-bet and STAT4 play critical roles in helper T cell differentiation, especially for Th1 cells. However, it is still unknown about the relative importance and redundancy of T-bet and STAT4 for Th1 differentiation. It is also unknown about their independent role of T-bet and STAT4 in the regulation of allergic airway inflammation. In this study, we addressed these issues by comparing T-bet-deficient (T-bet(-/-)) mice, STAT4(-/-) mice, and T-bet- and STAT4-double-deficient (T-bet(-/-)STAT4(-/-)) mice on the same genetic background. Th1 differentiation was severely decreased in T-bet(-/-) mice and STAT4(-/-) mice as compared with that in wild-type mice, but Th1 differentiation was still observed in T-bet(-/-) mice and STAT4(-/-) mice. However, Th1 cells were hardly detected in T-bet(-/-)STAT4(-/-) mice. In contrast, the maintenance of Th17 cells was enhanced in T-bet(-/-) mice but was reduced in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. In vivo, Ag-induced eosinophil and neutrophil recruitment into the airways was enhanced in T-bet(-/-) mice but was attenuated in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. Ag-induced IL-17 production in the airways was also diminished in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. These results indicate that STAT4 not only plays an indispensable role in T-bet-independent Th1 differentiation but also is involved in the maintenance of Th17 cells and the enhancement of allergic airway inflammation.  相似文献   

13.
Human RECQL1 and RECQL5 belong to the RecQ family that includes Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome causative genes. Cells derived from individuals suffering from these syndromes show significant levels of genomic instability. However, neither RECQL1 nor RECQL5 has been related to a disease, and nothing is known about the functions of RecQL1 and RecQL5. We generated here RECQL1(-/-), RECQL5(-/-), RECQL1(-/-)/RECQL5(-/-), RECQL1(-/-)/BLM(-/-), and RECQL5(-/-)/BLM(-/-) cells from chicken B-lymphocyte line DT40 cells. Although BLM(-/-) DT40 cells showed a slow-growth phenotype, a higher sensitivity to methyl methanesulfonate than the wild type, and an approximately 10-fold increase in the frequency of sister chromatid exchange (SCE) compared to wild-type cells, RECQL1(-/-), RECQL5(-/-), and RECQL1(-/-)/RECQL5(-/-) cells showed no significant difference from the wild-type cells in growth, sensitivity to DNA-damaging agents, and the frequency of SCE. However, both RECQL1(-/-)/BLM(-/-) and RECQL5(-/-)/BLM(-/-) cells grew more slowly than BLM(-/-) cells because of the increase in the population of dead cells, indicating that RecQL1 and RecQL5 are somehow involved in cell viability under the BLM function-impaired condition. Surprisingly, RECQL5(-/-)/BLM(-/-) cells showed a higher frequency of SCE than BLM(-/-) cells, indicating that RecQL5 suppresses SCE under the BLM function-impaired condition.  相似文献   

14.
Summary Recombinant DNA methodology has greatly increased our knowledge of the molecular pathology of the human genome at the same time as providing the means to diagnose inherited disease at the DNA level. Direct detection and analysis of a range of genetic defects are now possible using cloned gene or oligonucleotide probes or by direct sequencing of the disease gene(s). In addition, the use of restriction fragment length polymorphisms (RFLPs) within and around these genes as indirect genetic markers has now potentiated the tracking of disease alleles in affected pedigrees in cases where direct analysis was not feasible. RFLPs associated with linked anonymous segments may also be used not only to diagnose hitherto undetectable disease states, but also for chromosomal localization of the loci responsible. We present here an updated list of reports describing both the direct and the indirect analysis/diagnosis of human inherited disease; it is intended to serve as a guide to current molecular genetic approaches in diagnostic medicine.Abbreviations ADG Annales de Genetique - AHG Ann. Hum. Genet. - AICHG Abstracts Int. Congress Hum. Genet. 7, Berlin, 1986 - AJH Am. J. Haematol. - AJHG Am. J. Hum. Genet. - AJMG Am. J. Med. Genet. - AN Aneuploidy - ANYAS Ann. New York Acad. Sci - APRT Adeninephosphoribosyltransferase - ASHG American Soc. Hum. Genet. Abstracts 34th Ann. Meeting - ATS VII Atherosclerosis VII, Eds. Fidge and Nestel, Elsevier - Arch. Neurol. Archieves of Neurology - Arch. Oph. Arch. Ophthalmol. - Atherosclr. Atherosclerosis - BBRC Biochim. Biophys. Res. Comm. - BJH Brit. J. Haematol. - BMJ Brit. Med. J. - BST Biochem. Soc. Transact. - CCG Cytogenet. Cell Genet. - CDC Carrier detection using clonality - CGC Cancer Genet. Cytogenet. - DEL Deletion - DETECT Mode of Detection - Dis. Marker Disease Markers - DUP Duplication - EJB Eur. J. Biochem. - EJI Eur. J. Immunol. - HGM8 Human Gene Mapping 8 (CCG, Vol. 40, 1–824, 1985) - HGM9 Human Gene Mapping 9 (CCG, Vol. 46, 1–824, 1987) - HGM10 Human Gene Mapping 10 (CCG, Vol. 51, 1–824, 1989) - HPRT Hypoxanthinephosphoibosyltransferase - HVR Hypervariable region - Hos. Prac. Hospital Practice - IMG Immunogenetics - INS Insertion - INV Inversion - IZ Inter-zeta - J. Mol. End. J. Molec. Endocrinol. - JAMA J. Amer. Med. Assoc. - JBC J. Biol. Chem. - JCB J. Cell. Biol. - JCEM J. Clin. Endocrinol. Metab. - JCI J. Clin. Invest. - JMD J. Inher. Metab. Dis. - JIMM J. Immunogenet. - JJCR Jpn. J. Cancer Res. - JJHG Jpn. J. Hum. Genet. - JMG J. Med.Genet. - JNR J. Neurosci. Res. - LH Loss of heterozygosity - MBM Mol. Biol. Med. - MCB Molec. Cell. Biol. - MCKUS McKusick catalogue number - MMP Mismatch pairing analysis - MODY Maturity onset diabetes of the young - MOL. END. Molec. Endocrinol. - MUT Mutation - NAR Nucl. Acids Res. - NEJM New Engl. J. Med. - Neurol. Sup. Neurology Supplement - OLIGO Detection of mutation by oligonucleotide hybridisation - OPG Ophthal. Pediatr. Genet. - PNAS Proc. Natl. Acad. Sci. USA - Ped. Res. Pediatric Res. - PM Point mutation - Pren. Diag. Prenatal Diagnosis - RE Restriction enzyme analysis - REAR Rearrangement - RFLP Indirect analysis using likned RFLP - SEQU Analysis by DNA sequencing - SCMG Somat. Cell Molec. Genet. - Thr. Res. Thrombosis Research - XIA X-inactivation analysis - ar alphoid repeat - atyp. atypical - breakp. breakpoint - def. deficiency - fruct. fructose - haem. haemoglobin - hered. hereditary - minisat. minisatellite - mt mitochondrial - neph. nephritis - persist. persistent - phosph. phosphorylase - resis. resistant - phosph. phosphorylase - resist. resistant - sev. several - synth. synthetase - var various  相似文献   

15.
We have previously reported that the introduction of macrophage apoE into mice lacking both apoE and the LDL receptor (apoE(-)(/-)/LDLR(-)(/-)) through bone marrow transplantation (apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-)) produces progressive accumulation of apoE in plasma without affecting lipid levels. This model provides a tool to study the effects of physiologically regulated amounts of macrophage apoE on atherogenesis in hyperlipidemic animals. Ten-week-old male apoE(-)(/-)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) (n = 11) or apoE(-)(/-)/LDLR(-)(/-) (n = 14) marrow. Although there were no differences between the two groups in lipid levels at baseline or at 5 and 9 weeks after transplantation, apoE levels in the apoE(+)(/+)LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) mice increased to 4 times the apoE levels of normal mice. This resulted in a 60% decrease in aortic atherosclerosis in the apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) compared with the apoE(-)(/-)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) controls, (15957 +/- 1907 vs. 40115 +/- 8302 micro m(2) +/- SEM, respectively). In a separate experiment, apoE(+)(/+)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) or apoE(-)(/-)/LDLR(-)(/-) marrow and placed on a high-fat diet for 8 weeks. In the absence of macrophage apoE, lesion area was increased by 75% in the aortic sinus and by 56% in the distal aorta. These data show that physiologic levels of macrophage apoE in the vessel wall are anti-atherogenic in conditions of severe hyperlipidemia and can affect later stages of plaque development.  相似文献   

16.
B Wang  H Yang  Y C Liu  T Jelinek  L Zhang  E Ruoslahti  H Fu 《Biochemistry》1999,38(38):12499-12504
The 14-3-3 proteins interact with diverse cellular molecules involved in various signal transduction pathways controlling cell proliferation, transformation, and apoptosis. To aid our investigation of the biological function of 14-3-3 proteins, we have set out to identify high-affinity antagonists. By screening phage display libraries, we have identified a set of peptides which bind 14-3-3 proteins. One of these peptides, termed R18, exhibited a high affinity for different isoforms of 14-3-3 with estimated K(D) values of 7-9 x 10(-)(8) M. Recognition of multiple isoforms of 14-3-3 suggests the targeting of R18 to a structure that is common among 14-3-3 proteins, such as the conserved ligand-binding groove. Indeed, mutations that alter critical residues in the ligand-binding site of 14-3-3 drastically decreased the level of 14-3-3-R18 association. R18 efficiently blocked the binding of 14-3-3 to the kinase Raf-1, a physiological ligand of 14-3-3, and effectively abolished the protective role of 14-3-3 against phosphatase-induced inactivation of Raf-1. The cocrystal structure of R18 in complex with 14-3-3zeta revealed the occupancy of the general binding groove of 14-3-3zeta by R18, explaining the potent inhibitory effect of R18 on 14-3-3-ligand interactions. Such a well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of 14-3-3 antagonists with pharmacological applications.  相似文献   

17.
We sought to determine whether cerebral autoregulation (CA) is compromised during orthostatic stress superimposed with systemic hypotension. Transient systemic hypotension was produced by deflation of thigh cuffs previously inflated to suprasystolic pressure, combined with or without lower body negative pressure (LBNP). Cardiac output (CO) decreased from a baseline of 5.0+/-0.5 l/min by -8.3+/-1.7, -19.2+/-2.0, and -30.6+/-3.4% during LBNP of -15, -30, and -50 Torr, respectively. Mean arterial pressure (MAP) was maintained during LBNP, despite decreases in systolic and pulse pressures. Middle cerebral arterial blood flow velocity (VMCA) decreased significantly from a baseline of 64+/-3 to 58+/-4 cm/s (-9.7+/-2.4%) at -50 Torr of LBNP. The reduction in VMCA was associated with a decrease in regional cerebral O2 saturation. However, the percent decrease in VMCA was markedly less than that of CO. This suggests that the magnitude of the change in VMCA (an index of cerebral blood flow) is less than would be predicted, given the decrease in CO. Transient systemic hypotension decreased MAP by -21+/-2, -24+/-2, -28+/-3, and -26+/-3% at rest and during LBNP of -15, -30, and -50 Torr, respectively. Likewise, this acute hypotension resulted in decreases in VMCA of -20+/-2, -21+/-2, -24+/-25, and -19+/-2% and regional cerebral O2 saturation of -5+/-1, -6+/-1, -6+/-1, and -7+/-2% at rest and during LBNP of -15, -30, and -50 Torr, respectively. Complete recovery of VMCA to baseline values following transient hypotension (ranging from 5 to 8 s) occurred significantly earlier compared with MAP (from 10 to 12 s). No subjects experienced syncope during acute hypotension. We conclude that CA is preserved during LBNP, superimposed with transient systemic hypotension, despite the decrease in VMCA associated with sustained central hypovolemia in normal healthy individuals. This preserved CA is vital for the prevention of orthostatic syncope.  相似文献   

18.
Whether deletion of tumor necrosis factor (TNF) receptor 1 or 2 affects lipopolysaccharide (LPS)-mediated signaling is not understood. In this report, we used macrophages derived from wild type (wt) mice and from mice null for the type 1 receptor (p60-/-), the type 2 receptor (p80-/-), or both (p60-/- p80-/-) to investigate the effect of these receptors on LPS-mediated activation of NF-kappaB, mitogen-activated protein kinases, and apoptosis. LPS activated NF-kappaB by 3-4-fold in wt cells but by 9-10-fold in p60-/-, p80-/-, and p60-/- p80-/- macrophages. These results correlated with the IkappaBalpha kinase activation, which is needed for NF-kappaB activation. LPS-induced cyclooxygenase-2 and inducible NO synthase proteins and NO production were maximum in p60-/- p80-/- macrophages and minimum in wt cells. LPS activated C-Jun N-terminal kinase, p38MAPK, and extracellular signal-regulated kinase in wt cells, but the levels were much higher in p60-/-, p80-/-, and p60-/- p80-/- cells. LPS-induced cytotoxicity, poly(ADP-ribose) polymerase cleavage, and annexin V staining were also highest in p60-/- p80-/- cells and lowest in wt cells. The difference in LPS signaling was unrelated to the expression of LPS receptors, CD14, or toll-like receptor 4. Overall, our studies indicate that deletion of either of the TNF receptors sensitizes the macrophages to LPS and provide evidence for cross-talk between TNF and LPS signaling.  相似文献   

19.
Although vitamin D has been implicated in cardiovascular protection, few studies have addressed the role of vitamin D receptor (VDR) in atherosclerosis. Here we investigate the effect of inactivation of the VDR signaling on atherogenesis and the antiatherosclerotic mechanism of vitamin D. Low density lipoprotein receptor (LDLR)(-/-)/VDR(-/-) mice exhibited site-specific accelerated atherogenesis, accompanied by increases in adhesion molecules and proinflammatory cytokines in the aorta and cholesterol influx in macrophages. Macrophages showed marked renin up-regulation in the absence of VDR, and inhibition of renin by aliskiren reduced atherosclerosis in LDLR(-/-)/VDR(-/-) mice, suggesting that the renin-angiotensin system (RAS) promotes atherosclerosis in the absence of VDR. LDLR(-/-) mice receiving LDLR(-/-)/VDR(-/-) BMT developed larger lesions than LDLR(-/-) BMT controls. Moreover, LDLR(-/-) mice receiving Rag-1(-/-)/VDR(-/-) BMT, which were unable to generate functional T and B lymphocytes, still had more severe atherosclerosis than Rag-1(-/-) BMT controls, suggesting a critical role of macrophage VDR signaling in atherosclerotic suppression. Aliskiren treatment eliminated the difference in lesions between Rag-1(-/-)/VDR(-/-) BMT and Rag-1(-/-) BMT recipients, indicating that local RAS activation in macrophages contributes to the enhanced atherogenesis seen in Rag-1(-/-)/VDR(-/-) BMT mice. Taken together, these observations provide evidence that macrophage VDR signaling, in part by suppressing the local RAS, inhibits atherosclerosis in mice.  相似文献   

20.
Cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 account for >70% of all known cases of achromatopsia. Cones degenerate in achromatopsia patients and in CNGA3(-/-) and CNGB3(-/-) mice. This work investigates the molecular basis of cone degeneration in CNG channel deficiency. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we generated mouse lines with CNG channel deficiency on a cone-dominant background, i.e. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice. The retinal phenotype and potential cell death pathways were examined by functional, biochemical, and immunohistochemical approaches. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice showed impaired cone function, opsin mislocalization, and cone degeneration similar to that in the single knock-out mice. The endoplasmic reticulum stress marker proteins, including Grp78/Bip, phospho-eIF2α, phospho-IP(3)R, and CCAAT/enhancer-binding protein homologous protein, were elevated significantly in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, compared with the age-matched (postnatal 30 days) Nrl(-/-) controls. Along with these, up-regulation of the cysteine protease calpains and cleavage of caspase-12 and caspase-7 were found in the channel-deficient retinas, suggesting an endoplasmic reticulum stress-associated apoptosis. In addition, we observed a nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, implying a mitochondrial insult in the endoplasmic reticulum stress-activated cell death process. Taken together, our findings suggest a crucial role of endoplasmic reticulum stress in cone degeneration associated with CNG channel deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号