首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isomers of 3- and 4-ring polycyclic aromatic sulfur heterocycles were tested for mutagenicity in the Ames standard plate incorporation test and a liquid pre-incubation modification of the Ames test. Of the 4 three-ring compounds tested, only naphtho[1,2-b]thiophene was mutagenic. Of the four-ring compounds, 7 of 13 were mutagenic in the standard Ames or pre-incubation Ames test. The highest activity for the 4-ring compounds was observed for phenanthrol[3,4-b]thiophene, a compound of approximately the same mutagenic potency in the Ames test as benzo[a]pyrene. The other active 4-ring compounds were of considerable less mutagenic potency than phenanthrol[3,4-b]thiophene. Mutagenicity for two of the 4-ring aromatic thiophenes could only be detected in the liquid pre-incubation Ames test. Salmonella typhimurium TA100 was the most sensitive strain to mutagenesis by these compounds, followed by TA98. All mutagenesis was indirect, requiring metabolic activation.  相似文献   

2.
A simple modification of the Salmonella/microsome liquid-incubation procedure improves the sensitivity of the assay for detecting mutagens in human urine. Extracts from cigarette smokers' urine were used as a model complex mutagenic mixture for validation of the assay. The modification consists of adding increased numbers of bacterial cells (approximately 10(9] in a concentrated suspension to liver homogenate mix and urine extract, all in 0.2-ml volume. After 90 min incubation at 37 degrees C, the mixture is processed according to the standard Ames test protocol. This procedure is 20 times more sensitive than the standard plate-incorporation test and 13 times more sensitive than a previously reported liquid-incubation protocol. The number of spontaneous revertants did not increase under these conditions and, compared to the plate-incorporation test, 10-fold less liver homogenate and 5-fold less enzymatic cofactors were needed per plate. The procedure was approximately 14 times more sensitive in detecting the mutagenic activity of benzo[ a ]pyrene. We also used the modification to determine mutagenic activity in urine from a group of nonsmokers. The method may be generally useful for investigations of mutagenic activity in human urine samples.  相似文献   

3.
The effects of pH on the mutagenic activity of several chemicals were evaluated in the standard Ames Salmonella typhimurium plate-incorporation assay. The pH of the base agar was varied between 6.0 and 8.0. The positive control compounds routinely used in this laboratory, 2-aminoanthracene, 4-nitro-o-phenylenediamine, sodium azide and nitrofurantoin, showed increasing mutagenic activity as the pH was decreased to 6.0. However, the activity of two weakly mutagenic cosmetic ingredients, 2,2',4,4'-tetrahydroxybenzophenone and trans-4-phenyl-3-buten-2-one, was completely eliminated at pH levels near 6.0. It is concluded that plates poured with agar with pH levels below 7.0 can result in strong responses for the positive control chemicals but give negative results for some mutagens.  相似文献   

4.
Production of volatile mutagenic metabolites from 5 halogenated promutagens was examined by a simple modification of the conventional Salmonella/microsome mutagenicity assay. This method incorporates the taping together of 2 agar plates face to face during the initial portion of their incubation at 37 degrees C. By varying the contents of the soft agar in each of the two plates with respect to promutagen, S9 and tester strain cells, mutagenesis due to volatile promutagens and their metabolites could be quantitated separately. Using the taped plate assay, volatile mutagenic metabolites were detected from the promutagens 3-(2-chloroethoxy)-1,2-dichloropropene, the herbicides diallate, triallate and sulfallate, and the flame-retardant tris-(2,3-dibromopropyl) phosphate (Tris-BP). All compounds except Tris-BP were also found to be volatile promutagens. The mutagenic metabolites accounted for 50-80% of the activity of these compounds observed in the standard assay. Morever, our studies suggest that a small, but appreciable percentage of the mutagenic metabolites from all 5 compounds escaped detection in the conventional, untaped assay. Mutagenic activity of the volatile mutagenic metabolites from diallate was quenched by various Salmonella tester strains independent of their responsiveness to diallate mutagenesis. Detection of volatile mutagen formation from diallate was also prevented by cysteine and glutathione, but not by DNA or metyrapone. This taped plate method for the Salmonella assay should facilitate future investigations of the detection, isolation and identification of volatile mutagenic metabolites from other promutagenic compounds or mixtures.  相似文献   

5.
As part of a continuing study aimed at establishing structure-activity relationships and heuristic principles useful for the design of non-genotoxic azo dyes, a series of new direct dyes based on two non-mutagenic benzidine analogs, 2,2'-dimethyl-5,5'-dipropoxybenzidine and 3,3'-dipropoxybenzidine, were evaluated for mutagenic activity in Salmonella typhimurium strains TA98 and TA100. These strains are widely used for mutagenicity screening and have been shown to detect the mutagenic activity of benzidine analogs. While some toxicity was seen with some dyes at high doses, all of the dyes examined were judged non-mutagenic with and without metabolic activation in the standard Salmonella plate-incorporation assay. The results in the standard test are consistent with the properties of the diamines themselves. However, only one of the dyes was non-mutagenic when a reductive-metabolism pre-incubation assay was used. The results of this study suggest that although benzidine analogs are potential replacements for benzidine, there is a need to understand which mutagenic products are produced when reductive metabolism is present. There is also a need to know whether or not metal complexes of these dyes are mutagenic. Such information will allow the development of new non-mutagenic azo dyes.  相似文献   

6.
Since its development by Dr. Bruce Ames and his colleagues more than a decade ago, the Salmonella/mammalian microsome mutagenicity assay has become a widely accepted tool to assist in the identification of chemicals with mutagenic and carcinogenic potential. Several automated approaches to Salmonella testing have been proposed in recent years but have failed to gain acceptance in the scientific community due to poor performance or lack of demonstrated usefulness. In this paper we report on an automated system that successfully generates dose-response data and, moreover, reduces the labor, materials, and sample mass required to obtain such information. In the standard plate-incorporation assay, dose-response relationships are defined by testing discrete doses of the test agent on a series of agar plates. In contrast, the spiral Salmonella assay generates dose-response data from a continuous concentration gradient on a single agar plate. Upon analysis, each spiral plate yields a dose-response curve consisting of 13 data points that span a concentration range of about 15:1, which is equivalent to 5 two-fold serial dilutions. The performance of the spiral Salmonella assay was compared to that of the conventional plate-incorporation assay using 13 mutagens and 7 nonmutagens selected from a variety of chemical classes. Concordant qualitative responses were obtained for all compounds tested, and comparable dose-response relationships were generated by all mutagens with the exception of sodium azide and cyclophosphamide, which are highly water-soluble and, thus, are unable to maintain a well-defined concentration gradient on a spiral plate due to rapid diffusion. In general, toxicity was expressed at a lower dose in the spiral assay, and the mutagenic potencies (slopes of the dose-response curves) were greater in the spiral assay relative to the plate-incorporation assay. These differences will be discussed, as will the applicability of the spiral plating technique to routine screening and its relevancy to future mutagenesis testing.  相似文献   

7.
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bj?rseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.  相似文献   

8.
Nineteen coded chemicals were tested in an international collaborative study for their mutagenic activity. The assay system employed was the Ames II Mutagenicity Assay, using the tester strains TA98 and TAMix (TA7001-7006). The test compounds were selected from a published study with a large data set from the standard Ames plate-incorporation test. The following test compounds including matched pairs were investigated: cyclophoshamide, 2-naphthylamine, benzo(a)pyrene, pyrene, 2-acetylaminofluorene, 4,4'-methylene-bis(2-chloroaniline), 9,10-dimethylanthracene, anthracene, 4-nitroquinoline-N-oxide, diphenylnitrosamine, urethane, isopropyl-N(3-chlorophenyl)carbamate, benzidine, 3,3'-5,5'-tetramethylbenzidine, azoxybenzene, 3-aminotriazole, diethylstilbestrol, sucrose and methionine. The results of both assay systems were compared, and the inter-laboratory consistency of the Ames II test was assessed. Of the eight mutagens selected, six were correctly identified with the Ames II assay by all laboratories, one compound was judged positive by five of six investigators and one by four of six laboratories. All seven non-mutagenic samples were consistently negative in the Ames II assay. Of the four chemicals that gave inconsistent results in the traditional Ames test, three were uniformly classified as either positive or negative in the present study, whereas one compound gave equivocal results. A comparison of the test outcome of the different investigators resulted in an inter-laboratory consistency of 89.5%. Owing to the high concordance between the two test systems, and the low inter-laboratory variability in the Ames II assay results, the Ames II is an effective screening alternative to the standard Ames test, requiring less test material and labor.  相似文献   

9.
Metallic oxide powders (magnesium oxide, calcium oxide and zinc oxide) having antibacterial activity were examined for their mutagenicity and antimutagenicity by the Ames test with Salmonella typhimurium TA 102. These powders were not mutagenic to the tester strain and reduced the mutagenicity of methylglyoxal.  相似文献   

10.
Catechol was not mutagenic for Salmonella typhimurium TA98, TA100 or TA1537 in the presence or absence of S9 mix. At the lower level of S9 in the Ames method, the mutagenic activity of benzo[a]pyrene decreased with the increased addition of catechol. When catechol was added to the pre-incubation mixture at a higher concentration than in the conventional Ames method, the mutagenic activity of benzo[a]pyrene increased with the increased addition of catechol. Catechol is believed to be a co-mutagen for benzo[a]pyrene in the presence of a sufficient amount of S9 in the incubation mixture.  相似文献   

11.
The mutagenicity of 24 benzyl derivatives, containing a variety of substituents and leaving groups, were assayed in strain TA100 using the Ames plate-incorporation assay. p-Nitrobenzyl chloride (12 000 revertants/mumole), p-nitrobenzyl tosylate (6100 revertants/mumole), and p-acetoxybenzyl chloride (100 revertants/mumole) were mutagenic; none of the remaining 21 compounds were mutagenic. p-Nitrobenzyl chloride was also found to be mutagenic in strain TA98 (700 revertants/mumole), but not in strain TA98NR (a strain deficient in nitro reductase activity). p-Acetoxybenzyl chloride was nonenzymatically hydrolyzed to p-hydroxybenzyl alcohol and p-acetoxybenzyl alcohol. These findings suggest that nitrobenzyl derivatives were mutagenic due to nitro reductive metabolism and that p-acetoxybenzyl chloride was mutagenic due to the intermediate formation of p-hydroxybenzyl chloride during the hydrolysis of p-acetoxybenzyl chloride.  相似文献   

12.
Methyl isocyanate (MIC) in aqueous solution forms methylamine (MA) and N,N'-dimethylurea (DMU). MA in buffered system further converts into its salt form, methylamine hydrochloride (MAH). Therefore, MAH and DMU were evaluated for their mutagenic activity in the in vitro Ames Salmonella/microsome mutagenicity test. The liquid preincubation protocol was followed, using tester strains TA98, TA100 and TA104 of Salmonella typhimurium, in the presence of 0, 5, 15 and 30% Aroclor 1254-induced rat liver S9 mixture. DMU and MAH did not induce a mutagenic response in any of the tester strains, both in the presence and in the absence of S9 mixture. The results therefore confirm that MIC in its native form or as its unknown metabolites is responsible for the mutagenic activity reported earlier by us in the his tester strains TA100 and TA104 of Salmonella typhimurium (Mutation Res., 204 (1988) 123-129) and not due to its hydrolysis products, MA or DMU.  相似文献   

13.
Background and objectiveGenotoxicity analysis is one of the most important non-clinical environmental safety investigations required for pharmaceutical and agrochemical product registration. Any medicinal product must undergo a risk evaluation to determine its mutagenicity and carcinogenicity.Materials and methodsThe Ames test is a commonly used in vitro test for determining a test chemical's mutagenic activity. Histidine-dependent Salmonella typhimurium strains with a defective gene that causes the bacteria to synthesis the necessary amino acid histidine for life were tested for mutagenic potential. In order to reveal pro-mutagens and mutagens, the mutagenic potential of both plate integration and pre-incubation techniques was examined in the presence and absence of metabolizing system. Salacia chinensis has been widely used in ayurveda to treat various ailments. However, the information of mutagenicity of Salacia chinensis is scarce as per available literature.ResultsThe mutagenicity of a Salacia chinensis root extract was investigated utilizing the Ames assay with plate incorporation and pre-incubation protocols using the appropriate Salmonella typhimurium tester strains: TA98, TA100, TA1537, TA1535, and TA102 in the presence and absence of S9. The concentrations used were 0.3123, 0.625, 1.25, 2.5 and 5 mg/plate. The extract of Salacia chinensis root did not show any mutagenic effect in any of the Salmonella typhimurium strains at the concentrations tested in the absence or presence of metabolic activation.ConclusionThe root of Salacia chinensis was hence confirmed to be non-mutagenic and at least according to the results of this genotoxicity evaluation can be regarded as being safe for human use.  相似文献   

14.
The Ames microplate format (MPF?) test, which uses liquid media and in 384-well microplates with a readout based on a colour-change, has been used for over 10 years at several major pharmaceutical companies for screening the genotoxic potential of early drug candidates when compound supply is minimal. Meanwhile, Xenometrix has adapted this screen from the two-strain Ames II test for use with five tester strains, in compliance with OECD Guideline 471. A set of 15 equivocal to weakly positive chemicals selected from the National Toxicology Program (NTP) database was tested simultaneously in the Ames microplate format (MPF) and the standard Ames pre-incubation method on agar plates. Such a direct comparison of the two test methods with the same overnight culture(s), chemicals and S9-mix preparation should exclude external variability factors. Thirteen of the 15 chemicals showed concordant results in both tests despite the choice of chemicals that showed varying inter- and even intra-laboratory results in the NTP studies. These results indicate that the Ames MPF? assay is a reliable predictive tool that can be used like the regular Ames test to evaluate compounds for mutagenicity.  相似文献   

15.
Statistical features of a base-specific Salmonella mutagenicity assay are considered in detail, following up on a previous report comparing responses of base-specific Salmonella (Ames II) strains with those of traditional tester strains. In addition to using different Salmonella strains, the new procedure also differs in that it is performed as a microwell fluctuation test, as opposed to the standard plate or preincubation test. This report describes the statistical modeling of data obtained from the use of these new strains in the microwell test procedure. We emphasize how to assess any significant interactions between replicate cultures and exposure doses, and how to identify a significant increase in the mutagenic response to a series of concentrations of a test substance.  相似文献   

16.
Two in vitro tests (Ames test and SOS chromotest), one for bacterial mutagenicity and one for primary DNA damage, were assayed to determine the genotoxic activity of 6 pesticides (atrazine, captafol, captan, chlorpyrifosmethyl, molinate and tetrachlorvinphos). Assays were carried out both in the absence and presence of S9 fractions of liver homogenate from rat (Sprague–Dawley) pretreated with Aroclor 1254. Captan and captafol were genotoxic on both the Ames test and the SOS chromotest. Comparisons with mutagenesis data in Salmonella indicated that the SOS assay detected as genotoxic the pesticides that were mutagenic on the Salmonella test. Non-genotoxic effects were not detected in vitro either in the Salmonella/microsome assay nor in the SOS chromotest when bacterial tester strains were exposed to atrazine, molinate, chlorpyrifosmethyl and tetrachlorvinphos in the absence or presence of S9 mix.  相似文献   

17.
Apomorphine, N-nor-N-propyl-apomorphine, dopamine, L-DOPA, 6-hydroxydopamine and adrenaline were evaluated for genotoxicity using the Ames test and DNA repair-deficient and DNA repair-proficient Bacillus subtilis strains (rec assay, H17/M45; HLL3g/HJ-15). In the absence of an S9 liver homogenate, apomorphine induced frame-shift mutations in Salmonella typhimurium, mainly in strain TA1537; no indication of DNA-damaging effects in B. subtilis was observed. N-Nor-N-propyl-apomorphine was tested using strain TA1537 only and found to be mutagenic. Dopamine, L-DOPA, 6-hydroxydopamine and adrenaline were non-mutagenic when tested without S9, whereas they were all more toxic for DNA repair-deficient than for DNA repair-proficient B. subtilis strains, indicating a DNA-damaging potential. In a second set of experiments the mode of action of apomorphine and the relevance of the positive Ames test data were investigated. Glutathione in physiological concentrations reduced the mutagenic effect of apomorphine in a dose-dependent way, both in the presence and the absence of S9. S9 also reduced the mutagenicity of apomorphine. By comparing the effects of a complete S9 mix with those of a preparation without glucose-6-phosphate and NADP, it became clear that S9 also had an activating effect, overshadowed under standard conditions by its deactivating activity. Apomorphine was not mutagenic under anaerobic conditions. Superoxide dismutase and catalase reduced the mutagenic effect of apomorphine. All test conditions which reduced the mutagenic effect also inhibited the dark discoloration of the tester plates, indicating a retardation of apomorphine oxidation. It can, therefore, be concluded that oxidation of apomorphine leads to mutagenic products which induce frame-shift mutations in Salmonella typhimurium. This oxidation was prevented both by glutathione in concentrations well below physiological levels and/or by catalase and superoxide dismutase. Under these conditions, apomorphine was non-mutagenic in therapeutic concentrations as well as at higher dose levels. The possibility of genotoxic side effects occurring in patients treated with apomorphine as an emetic drug is therefore considered to be very unlikely.  相似文献   

18.
Cyclopenta-fused isomers of pyrene and benz[a]anthracene, nitrated on the etheno bridge, were synthesized and tested in the Ames plate-incorporation assay. Since enzymatic reduction, if it occurs in these compounds, would form arylhydroxylamines which in turn would form highly stabilized arylnitrenium ions, we hoped to test the hypothesis that the direct-acting mutagenic activity of nitroPAH is correlated with the degree of stabilization of the electrophilic intermediate. We found that these compounds are mutagenic (1-9 rev/nmole in Salmonella typhimurium TA98) and do not require S9 activation. However, this activity is substantially lower than that of other nitroPAH of comparable size such as 1-nitropyrene (250-300 rev/nmole). The reasons for this comparative lack of activity are discussed with reference to current theories regarding structure-activity relationships of nitroPAH.  相似文献   

19.
The genotoxicity of 51 epoxides is studied with the SOS-Chromotest using Escherichia coli PQ37 as tester strain. The results obtained with this test system are compared with results of the Ames test. Out of 51 epoxides, 39 are shown to be mutagenic in Salmonella typhimurium whereas only 27 mutagenic epoxides induced the SOS response in Escherichia coli PQ37.  相似文献   

20.
The mutagenicity of nifurtimox (nfx) and 8 nfx analogues has been investigated with the L-arabinose forward-mutation assay of Salmonella typhimurium. The nfx analogues tested were obtained by replacing the 3-methyl-4-yl-tetrahydro-1,4-thiazine-1,1-dioxide group of the parent compound with the following other groups: indazol-1-yl (1); pyrazol-1-yl (2); benzimidazol-1-yl (3); 1,2,4-triazol-4-yl (4); 1-methyl-3-methylthio-1,2,4-triazol-4-yl-5-thione (5); 3,5-bis(methylthio)-1,2,4-triazol-4-yl (6); 1-adamantyl (7); 4,6-diphenylpyridin-1-yl-2-one (8). The mutagenic activity of each chemical was determined by the standard plate-incorporation test, in the presence or absence of the S9 activation mixture. The 9 compounds were mutagenic and exhibited linear dose-mutagenic response relationships. They were direct-acting mutagens and showed a nearly 1000-fold range in mutagenic potency from chemical 1 to nfx. In most cases, the addition of S9 mixture to the test plates decreased the mutagenicity of compounds. This effect was particularly noticeable in the case of chemicals 1-3, 5 and 7 where a more than 70% decrease in mutagenic activity was observed in the presence of the S9 mixture. The mutagenic potency of compounds in the Ara test showed a negative linear correlation with previously reported antitrypanosomal activity. Thus, chemicals 6 and 8 with in vitro activities against Trypanosoma cruzi clearly superior to that of nfx showed 2 of the lowest mutagenic potencies in the Ara test and these were only somewhat higher than the mutagenicity of the reference drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号