首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In B lymphopoiesis, Ag receptor expression and signaling are critical to determine developmental progression, survival, and activation. Several positive and negative selection checkpoints to test this receptor have been described in B lymphopoiesis, aiming to ensure the generation of functionally competent, nonautoimmune repertoire. Secondary Ag receptor gene recombination allows B lymphocytes to replace an inappropriate receptor with a new receptor, a mechanism called receptor editing. This salvage mechanism uncouples the Ag receptor fate from that of the cell itself, suggesting that B cell repertoire is regulated by a process of receptor selection. Secondary rearrangements are stimulated in different stages of B cell development, where editing of the receptor is necessary to fulfill stage-specific requirements. In this study, we discuss the contribution of receptor editing in B lymphopoiesis and its regulation by positive and negative selection signals.  相似文献   

2.
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.  相似文献   

3.
VlambdaJlambda rearrangements obtained from genomic DNA of individual IgM(+) B cells from human fetal spleen were analyzed. A nonrandom pattern of lambda gene rearrangements that differed from the adult Vlambda repertoire was found. The Vlambda distal genes 8A and 4B were absent from the nonproductive fetal repertoire, whereas 2E and 3L were overrepresented and 1B was underrepresented in the productive fetal repertoire. Positive selection of the Vlambda gene, 2E, along with Vlambda rearrangements employing homologous VlambdaJlambda joins were observed in the fetal, but not in the adult Vlambda repertoire. Overrepresentation of Jlambda distal cluster C genes rearranging to the Vlambda distal J segment, Jlambda7, in both productive and nonproductive fetal repertoires suggested that receptor editing/replacement was more active in the fetus than in adults. Numerous identical VlambdaJlambda junctions were observed in both the productive and nonproductive repertoire of the fetus and adult, but were significantly more frequent in the productive repertoire of the fetus, suggesting expansion of B cells expressing particular lambda-light chains in both stages of development, with more profound expansion in the fetal repertoire. Notably, B cells expressing identical lambda-light chains expressed diverse heavy chains. These data demonstrate that three mechanisms strongly influence the shaping of the human fetal lambda-chain repertoire that are less evident in the adult: positive selection, receptor editing, and expansion of B cells expressing specific lambda-light chains. These events imply that the expressed fetal repertoire is shaped by exposure to self Ags.  相似文献   

4.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

5.

Background  

Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract.  相似文献   

6.
The DNA rearrangements leading to the assembly of genes coding for the immunoglobulin heavy chain (IgH) in B cells and the T cell receptor for antigen in T cells are not completely lineage specific. This probably reflects the use of a common recombinase by IgH and the T cell receptor. This paper describes novel observations on the nature of these cross-lineage rearrangements. A high proportion (though not all) IgH rearrangements in human T leukaemic cells involve the D segment nearest to the J region (DQ52). This same D segment is not involved in B cell IgH rearrangements with one important exception, namely a proportion of B cell leukaemic clones with the most primitive B cell precursor phenotype. These observations have potentially important implications for early lymphoid cell differentiation and in particular support the idea that the 3' D plus J region might lie within a limited window of accessibility of the IgH gene in precursor lymphocytes.  相似文献   

7.
Recent advances in high-throughput sequencing allow for the competitive analysis of the human B and T cell immune repertoire. In this study we compared Immunoglobulin and T cell receptor repertoires of lymphocytes found in kidney and blood samples of 10 patients with various renal diseases based on next-generation sequencing data. We used Biomed-2 primer panels and ImmunExplorer software to sequence, analyze and compare complementarity determining regions and V-(D)-J elements. While generally an individual’s renal receptor repertoire is different from the repertoire present in blood, 94% (30/32) of the lymphocytes with clonal expansion in kidney can also be traced in blood however, not all of these clonotypes are equally abundant. Summarizing the data of all analyzed patients, 68% of highly expanded T cell clonotypes and 30% of the highly expanded B cell clonotypes that have infiltrated the kidney can be found amongst the five most abundant clonotypes in blood. In addition, complementarity determining region 3 sequences of the immunoglobulin heavy chains are on average more diverse than T cell receptor beta chains. Immune repertoire analysis of tissue infiltrating B and T cells adds new approaches to the assessment of adaptive immune response in kidney diseases. Our data suggest that expanded clonotypes in the tissues might be traceable in blood samples in the course of treatment or the natural history of the disease.  相似文献   

8.
The recombinase-activating genes, RAG-1 and RAG-2, can be expressed by a subset of B cells within germinal centers, where they mediate secondary V(D)J rearrangements. This receptor revision mechanism could serve either receptor diversification or tolerance-induced functions. Alternatively, it might rescue those cells the receptors of which have been damaged by somatic mutation. Less is known about the occurrence of similar mechanisms in T cells. Here we show that mature T cells with defective TCR surface expression can express RAG genes and are capable of initiating secondary V(D)J rearrangements. The possibility that a cell rescue mechanism based on the generation of a novel Ag receptor might be active in peripheral T cells is envisaged.  相似文献   

9.
10.
We have characterized the genomic organization of the three zebrafish L chain isotypes and found they all differed from those reported in other teleost fishes. Two of the zebrafish L chain isotypes are encoded by two loci, each carrying multiple V gene segments. To understand the derivation of these L chain genes and their organizations, we performed phylogenetic analyses and show that IgL organization can diverge considerably among closely related species. Except in zebrafish, the teleost fish IgL each contain only two to four recombinogenic components (one to three V, one J) and exist in multiple copies. BCR heterogeneity can be generated, but this arrangement apparently provides neither combinatorial diversification nor an opportunity for the secondary rearrangements that, in mammals, take place during receptor editing, a process crucial to the promotion of tolerance in developing lymphocytes. Examination of the zebrafish IgL recombination possibilities gave insight into how the suppression of self-reactivity by receptor editing might be managed, including in miniloci. We suggest that, despite the diverse IgL organizations in early and higher vertebrates, two elements essential to generating the Ab repertoire are retained: the numerous genes/loci for ligand-binding diversification and the potential for correcting unwanted specificities that arise.  相似文献   

11.
The quality and quantity of BCR signals impact on cell fate decisions of B lymphocytes. Here, we describe novel gene-targeted mice, which in the context of normal VDJ recombination show hypomorphic expression of immunoglobulin μ heavy chain (μHC) mRNA levels and hence lower pre-BCR and BCR levels. Hypomorphic expression of μHC leads to augmented selection processes at all stages of B-cell development, noticeably at the expansion of pre-B cells, the positive selection of immature B lymphocytes in the bone marrow and the selection of the follicular (FO), marginal zone (MZ) and B1 B-lymphocyte compartment in peripheral lymphoid organs. Immature as well as mature FO and MZ B lymphocytes in the peripheral lymphoid organs express lower levels of the receptor for B-cell activating factor (BAFF). In addition, hypomorphic expression of the BCR favours receptor editing. Together, our results highlight the critical importance of pre-BCR and BCR receptor levels for the normal development of B-lymphocyte subpopulations in the context of intact VDJ recombination and a diverse antibody repertoire.  相似文献   

12.
To determine the distribution of Vlambda and Jlambda as well as VH and JH gene usage in a patient with systemic lupus erythematosus (SLE), productive and nonproductive VJ and V(D)J rearrangements were amplified from individual peripheral CD19+ B cells and were analyzed. No differences in the Vlambda and Jlambda or the VH and JH gene usage in the nonproductive gene repertoire of this SLE patient were found compared with the distribution of genes found in normal adults, whereas marked skewing of both Vlambda and VH was noted among the productive rearrangements. The distribution of productive Vlambda rearrangements was skewed, with significantly greater representation of the Jlambda distal cluster C Vlambda genes and the Vlambda distal Jlambda7 element, consistent with the possibility that there was receptor editing of the Vlambda locus in this patient. Significant bias in VH gene usage was also noted with VH3 family members dominating the peripheral B cell repertoire of the SLE patient (83%) compared with that found in normal subjects (55%; p < 0.001). Notably, a clone of B cells employing the VH3-11 gene for the heavy chain and the Vlambda1G segment for the light chain was detected. These data are most consistent with the conclusion that extreme B cell overactivity drives the initial stages of SLE leading to remarkable changes in the peripheral V gene usage that may underlie on fail to prevent the emergence of autoimmunity.  相似文献   

13.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

14.
Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.  相似文献   

15.
16.
Ligation of B cell receptors on immature bone marrow B cells, either by an endogenous Ag or by an anti-B cell receptor Ab induces secondary V(D)J gene rearrangements, termed receptor editing. Whether the same signal induces receptor editing in transitional B cells is not clear. In this study, we examined the responses of immature and transitional B cells from V(H)12Vkappa1A Ig transgenic mice to stimulation with an anti-Igbeta Ab. Our results demonstrated that immature B cells stimulated with a low concentration of anti-Igbeta Ab, mimicking Ag stimulation, underwent receptor editing both in vivo and in vitro, as evidenced by the detection of dsDNA breaks at Jkappa recombination signal sequences, whereas transitional B cells did not. The lack of dsDNA breaks in transitional B cells contrasts with their increased expression of RAG1 and RAG2, suggesting a novel mechanism that may prevent rearrangements. Furthermore, treatment of transitional B cells with high concentrations of anti-Igbeta Abs induced apoptosis, whereas low concentrations induced differentiation. Our results support the idea that transitional B cells lose the capacity to edit, but are sensitive to positive and negative selection.  相似文献   

17.
Receptor editing is an important mechanism to modify the Ag specificity of newly developing B cells that are reactive with self-Ags. Previous studies have suggested that late immature B cells, bearing high levels of IgM on their cell surface, are unable to initiate receptor editing and instead are deleted by apoptosis. Using the hen egg lysozyme transgenic system, we show that IgM(high) late-immature B cells are fully capable of receptor editing to soluble self-Ag. This was demonstrated by the induction of new endogenous light chain locus rearrangements and by a single-cell flow cytometric assay using a recombination-activating gene 2-green fluorescence protein reporter transgene. These studies suggest that the developmental window available for immature B cells to edit their Ig receptors, at least in response to certain soluble Ags, extends through the IgM(high) late immature B cell stage.  相似文献   

18.
The kinetics of T and B cell immune recovery after bone marrow transplantation (BMT) is affected by many pre- and post-transplant factors. Because of the profoundly depleted baseline T and B cell immunity in recombination activating gene 2 (RAG-2)-deficient severe combined immunodeficiency (SCID) patients, some of these factors are eliminated, and the immune recovery after BMT can then be clearly assessed. This process was followed in ten SCID patients in parallel to their associated transplant-related complications. Early peripheral presence of T and B cells was observed in 8 and 4 patients, respectively. The latter correlated with pre-transplant conditioning therapy. Cells from these patients carried mainly signal joint DNA episomes, indicative of newly derived B and T cells. They were present before the normalization of the T cell receptor (TCR) and the B cell receptor (BCR) repertoire. Early presentation of the ordered TCR gene rearrangements after BMT occurred simultaneously, but this pattern was heterogeneous over time, suggesting different and individual thymic recovery processes. Our findings early after transplant could suggest the long-term patients' clinical outcome. Early peripheral presence of newly produced B and T lymphocytes from their production and maturation sites after BMT suggests donor stem cell origin rather than peripheral expansion, and is indicative of successful outcome. Peripheral detection of TCR excision circles and kappa-deleting recombination excision circles in RAG-2-deficient SCID post-BMT are early markers of T and B cell reconstitution, and can be used to monitor outcome and tailor specific therapy for patients undergoing BMT.  相似文献   

19.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

20.
In Vbeta5 transgenic mice, the age-dependent accumulation of Vbeta5(-)CD4(+) T cells expressing endogenous Vss elements represents an exception to the rule of strict allelic exclusion at the TCRbeta locus. The appearance of these cells is limited to the lymphoid periphery and is driven by a peripherally expressed tolerogen. Expression of the lymphoid-specific components of the recombinase machinery and the presence of recombination intermediates strongly suggest that TCR revision rescues tolerogen-reactive peripheral T cells from deletion. Here, we report that the appearance of Vbeta5(-)CD4(+) T cells is CD28-dependent. In addition, we find that the TCR repertoire of this unusual population of T cells in individual Vbeta5 transgenic mice is surprisingly diverse, both at the level of surface protein and at the nucleotide level within a given family of V(D)Jbeta rearrangements. This faithful recreation of the nontransgenic repertoire suggests that endogenous Vbeta-expressing populations do not arise from expansion of an initially rare subset. Furthermore, the undersized N regions in revised TCR genes distinguish these sequences from those generated in the adult thymus. The diversity of the revised TCRs, the minimal mouse-to-mouse variation in the expressed endogenous Vbeta repertoire, the atypical length of junctional sequences, and the CD28 dependence of the accumulation of Vbeta5(-)CD4(+) T cells all point to their extrathymic origin. Thus, tolerogen-driven receptor revision in peripheral T cells can expand the TCR repertoire extrathymically, thereby contributing to the flexibility of the immune repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号