首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal infections arise frequently in immunocompromised patients, and sterol synthesis is a primary pathway targeted by antifungal drugs. In particular, the P450 protein Erg11/Cyp51 catalyzes a critical step in ergosterol synthesis, and the azole class of antifungal drugs inhibits Erg11. Dap1 is a heme-binding protein related to cytochrome b5 that activates Erg11, so that cells lacking Dap1 accumulate the Erg11 substrate and are hypersensitive to Erg11 inhibitors. Heme binding by Dap1 is crucial for its function, and point mutants in its heme-binding domain render Dap1 inactive for sterol biosynthesis and DNA damage resistance. Like Dap1, the human homologue, PGRMC1/Hpr6, also regulates sterol synthesis and DNA damage resistance. In the present study, we demonstrate that the Dap1 heme-1 domain is required for growth under conditions of low iron availability. Loss of Dap1 is suppressed by elevated levels of Erg11 but not by increased heme biosynthesis. Dap1 localizes to punctate cytoplasmic structures that co-fractionate with endosomes, and Dap1 contributes to the integrity of the vacuole. The results suggest that Saccharomyces cerevisiae Dap1 stimulates a P450-catalyzed step in sterol synthesis via a distinct localization from its homologues in Schizosaccharomyces pombe and mammals and that this function regulates iron metabolism.  相似文献   

2.
3.
In this issue of Cell Metabolism, Espenshade and colleagues (Hughes et al., 2007) show that the hemoprotein Dap1/PGRMC1 forms a stable complex with several members of the cytochrome P450 superfamily of enzymes and positively regulates their activities. This action indicates an important role for Dap1/PGRMC1 in P450-catalyzed reactions, some of which are involved in the metabolism of sterols and pharmaceutical compounds.  相似文献   

4.
Alkylating agents chemically modify DNA and cause mutations that lead to cancer. In the budding yeast Saccharomyces cerevisiae, resistance to the alkylating agent methyl methanesulfonate (MMS) is mediated in part by Dap1p (damage resistance protein 1). Dap1p is related to cytochrome b5, which activates cytochrome P450 proteins, elevating the metabolism of lipids and xenobiotic compounds. We have found that Dap1p, like cytochrome b5, binds to heme and that Dap1p targets the cytochrome P450 protein Erg11p/Cyp51p. Genetic analysis indicates that Erg11p acts downstream of Dap1p. Furthermore, Dap1p regulates the stability of Erg11p, and Erg11p is stabilized in dap1Delta cells by the addition of heme. Thus, Dap1p utilizes heme to stabilize Erg11p, which in turn regulates ergosterol synthesis and MMS resistance. Dap1p homologues have been identified in numerous eukaryotes, including mammals, suggesting that the Dap1p-cytochrome P450 protein pathway is broadly conserved in eukaryotic species.  相似文献   

5.
6.
《Fungal Biology Reviews》2018,32(3):131-142
Cyp51 (Sterol 14α-demethylase) is the single cytochrome P450 (Cyp) required for sterol biosynthesis in different phyla. Among hundreds of P450 proteins, Cyp51 is evolutionarily the oldest P450 protein and is the only cytochrome P450 protein present in most biological kingdoms including fungi, bacteria, plants and animals. A valuable class of antifungals such as azoles, amphotericin B, specifically target the fungal Cyp51 (Erg11), a lanosterol demethylase that is critical for the specific component of the fungal plasma membrane ergosterol biosynthesis. However, pathogenic fungi worldwide have developed resistance to azoles, largely through mutations in the Cyp51/Erg11 protein. Structural studies have elucidated the resistance mechanisms associated with these mutations are mostly caused by decreased the binding affinity of the azoles to the Cyp51 protein and affect the stability of Cyp51 protein. In addition, the overexpression of the cyp51 gene will also increase azole resistance, which addresses the critical role of Cyp51 regulators. In this review, we explore the fungal Cyp51 from the evolution, regulation and the contribution of Cyp51 mutations to azole resistance aspects. Knowledge gained from Cyp51 research will benefit to develop novel Cyp51-based antifungals.  相似文献   

7.
8.

Background  

Placenta-derived oestrogens have an impact on the growth and differentiation of the trophoblast, and are involved in processes initiating and facilitating birth. The enzyme that converts androgens into oestrogens, aromatase cytochrome P450 (P450arom), is encoded by the Cyp19 gene. In the placenta of the cow, expression of Cyp19 relies on promoter 1.1 (P1.1). Our recent studies of P1.1 in vitro and in a human trophoblast cell line (Jeg3) revealed that interactions of placental nuclear protein(s) with the E-box element at position -340 are required for full promoter activity. The aim of this work was to identify and characterise the placental E-box (-340)-binding protein(s) (E-BP) as a step towards understanding how the expression of Cyp19 is regulated in the bovine placenta.  相似文献   

9.
The resident integral hepatic endoplasmic reticulum (ER) proteins, cytochromes P450 (P450s), turn over in vivo with widely varying half-lives. We and others (Correia et al., Arch. Biochem. Biophys. 297, 228, 1992; and Tierney et al., Arch. Biochem. Biophys. 293, 9, 1992) have previously shown that in intact animals, the hepatic P450s of the 3A and 2E1 subfamilies are first ubiquitinated and then proteolyzed after their drug-induced suicide inactivation. Our findings with intact rat hepatocytes and ER preparations containing native P450s and P450s inactivated via heme modification of the protein have revealed that the proteolytic degradation of heme-modified P450s requires a cytosolic ATP-dependent proteolytic system rather than lysosomal or ER proteases (Correia et al., Arch. Biochem. Biophys. 297, 228, 1992). Using purified cumene hydroperoxide-inactivated P450s (rat liver P450s 2B1 or 3A and/or a recombinant human liver P450 3A4) as models, we now document that these heme-modified enzymes are indeed ubiquitinated and then proteolyzed by the 26S proteasome, but not by its 20S proteolytic core. In addition, our studies indicate that the ubiquitination of these heme-modified P450s is preceded by their phosphorylation. It remains to be determined whether, in common with several other cellular proteins, such P450 phosphorylation is indeed required for their degradation. Nevertheless, these findings suggest that the membrane-anchored P450s are to be included in the growing class of ER proteins that undergo ubiquitin-dependent 26S proteasomal degradation.  相似文献   

10.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

11.
Lepesheva GI  Virus C  Waterman MR 《Biochemistry》2003,42(30):9091-9101
CYP51 (sterol 14 alpha-demethylase) is an essential enzyme in sterol biosynthetic pathways and the only P450 gene family having catalytically identical orthologues in different biological kingdoms. The proteins have low sequence similarity across phyla, and the whole family contains about 40 completely conserved amino acid residues. Fifteen of these residues lie in the secondary structural elements predicted to form potential substrate recognition sites within the P450 structural fold. The role of 10 of these residues, in the B' helix/BC loop, helices F and G, has been studied by site-directed mutagenesis using as a template the soluble sterol 14 alpha-demethylase of known structure, CYP51 from Mycobacterium tuberculosis (MT) and the human orthologue. Single amino acid substitutions of seven residues (Y76, F83, G84, D90, L172, G175, and R194) result in loss of the ability of the mutant MTCYP51 to metabolize lanosterol. Residual activity of D195A is very low, V87A is not expressed as a P450, and A197G has almost 1 order of magnitude increased activity. After purification, all of the mutants show normal spectral properties, heme incorporation, and the ability to be reduced enzymatically and to interact with azole inhibitors. Profound influence on the catalytic activity correlates well with the spectral response to substrate binding, effect of substrate stabilization on the reduced state of the P450, and substrate-enhanced efficiency of enzymatic reduction. Mutagenesis of corresponding residues in human CYP51 implies that the conserved amino acids might be essential for the evolutionary conservation of sterol 14 alpha-demethylation from bacteria to mammals.  相似文献   

12.
Cytochrome P450 monooxygenases (P450s) are a diverse family of proteins that have specialized roles in secondary metabolism and in normal cell development. Two P450s in particular, CYP734A1 and CYP72C1, have been identified as brassinosteroid-inactivating enzymes important for steroid-mediated signal transduction in Arabidopsis thaliana. Genetic analyses have demonstrated that these P450s modulate growth throughout plant development. While members of the CYP734A subfamily inactivate brassinosteroids through C-26 hydroxylation, the biochemical activity of CYP72C1 is unknown. Because CYP734A1 and CYP72C1 in Arabidopsis diverge more than brassinosteroid inactivating P450s in other plants, this study examines the structure and biochemistry of each enzyme. Three-dimensional models were generated to examine the substrate binding site structures and determine how they might affect the function of each P450. These models have indicated that the active site of CYP72C1 does not contain several conserved amino acids typically needed for substrate hydroxylation. Heterologous expression of these P450s followed by substrate binding analyses have indicated that CYP734A1 binds active brassinosteroids, brassinolide and castasterone, as well as their upstream precursors whereas CYP72C1 binds precursors more effectively. Seedling growth assays have demonstrated that the genetic state of CYP734A1, but not CYP72C1, affected responsiveness to high levels of exogenous brassinolide supporting our observations that CYP72C1 acts on brassinolide precursors. Although there may be some overlap in their physiological function, the distinct biochemical functions of these proteins in Arabidopsis has significant potential to fine-tune the levels of different brassinosteroid hormones throughout plant growth and development.  相似文献   

13.

Background

Membrane-associated progesterone receptors are restricted to the endoplasmic reticulum and are shown to regulate the activity of cytochrome P450 enzymes which are involved in steroidogenesis or drug detoxification. PGRMC1 and PGRMC2 belong to the membrane-associated progesterone receptor family and are of interest due to their suspected role during cell cycle. PGRMC1 and PGRMC2 are thought to bind to each other; thereby suppressing entry into mitosis. We could previously report that PGRMC2 interacts with the nucleoporin ALADIN which when mutated results in the autosomal recessive disorder triple A syndrome. ALADIN is a novel regulator of mitotic controller Aurora kinase A and depletion of this nucleoporin leads to microtubule instability.

Results

In the current study, we present that proliferation is decreased when ALADIN, PGRMC1 or PGRMC2 are over-expressed. Furthermore, we find that depletion of ALADIN results in mislocalization of Aurora kinase A and PGRMC1 in metaphase cells. Additionally, PGRMC2 is over-expressed in triple A patient fibroblasts.

Conclusion

Our results emphasize the possibility that loss of the regulatory association between ALADIN and PGRMC2 gives rise to a depletion of PGRMC1 at kinetochore fibers. This observation may explain part of the symptoms seen in triple A syndrome patients.
  相似文献   

14.
Sterol 14alpha-demethylase encoded by CYP51 is a member of the cytochrome P450 (CYP) superfamily of enzymes and has been shown to have an essential role in sterol biosynthesis in eukaryotes, with orthologues recently being described in some bacteria. Examination of the genome sequence data for the proteobacterium Methylococcus capsulatus, a bacterial species known to produce sterol, revealed the presence of a single CYP with strong homology to CYP51, particularly to a form in Mycobacterium tuberculosis. This M. capsulatus CYP51 protein represents a new class of CYP consisting of the CYP domain naturally fused to a ferredoxin domain at the C terminus via an alanine-rich linker. Expression of the M. capsulatus MCCYP51FX fusion in Escherichia coli yielded a P450, which, when purified to homogeneity, had the predicted molecular mass approximately 62 kDa on SDS/PAGE and bound lanosterol as a putative substrate. Sterol 14alpha-demethylase activity was shown (0.24 nmol of lanosterol metabolized per minute per nanomole of MCCYP51FX fusion) by gas chromatography/mass spectrometry with the activity dependent upon the presence of ferredoxin reductase and NADPH. Our unique findings describe a new class of naturally existing cytochrome P450, which will provide pivotal information for CYP structure/function in general.  相似文献   

15.
Lepesheva GI  Nes WD  Zhou W  Hill GC  Waterman MR 《Biochemistry》2004,43(33):10789-10799
New isoforms of CYP51 (sterol 14alpha-demethylase), an essential enzyme in sterol biosynthesis and primary target of azole antimycotic drugs, are found in pathogenic protists, Trypanosoma brucei(TB), T. vivax, T. cruzi, and Leishmania major. The sequences share approximately 80% amino acid identity and are approximately 25% identical to sterol 14alpha-demethylases from other biological kingdoms. Differences of residues conserved throughout the rest of the CYP51 family that align with the BC-loop and helices F and G of CYP51 from Mycobacterium tuberculosis (MT)) imply possible alterations in the topology of the active site cavity of the protozoan enzymes. CYP51 and cytochrome P450 reductase (CPR) from TB were cloned, expressed in Escherichia coli, and purified. The P450 has normal spectral features (including absolute absorbance, carbon monoxide, and ligand binding spectra), is efficiently reduced by TB and rat CPR but demonstrates altered specificity in comparison with human CYP51 toward three tested azole inhibitors, and contrary to the human, Candida albicans, and MT isoforms, reveals profound substrate preference toward obtusifoliol (turnover 5.6 min(-1)). It weakly interacts with the other known CYP51 substrates; slow lanosterol conversion predominantly produces the 14alpha-carboxyaldehyde intermediate. Although obtusifoliol specificity is typical for plant isoforms of CYP51, the set of sterol biosynthetic enzymes in the protozoan genomes together with available information about sterol composition of kinetoplastid cells suggest that the substrate preference of TBCYP51 may reflect a novel sterol biosynthetic pathway in Trypanosomatidae.  相似文献   

16.
The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.  相似文献   

17.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

18.
19.
Ecdysteroids regulate many key developmental events in arthropods including molting and metamorphosis. Recently, members of the Drosophila Halloween group of genes, that are required for embryonic viability and cuticle deposition, have been shown to code for several cytochrome P450 enzymes that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each is expressed at all stages of development and shows no closely related homolog in their respective genomes. In contrast, we show here that several dipteran genomes encode two novel, highly related, microsomal P450 enzymes, Cyp307A1 and Cyp307A2, that likely participate as stage-specific components of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during larval stages within the prothoracic gland cells of the ring gland. RNAi mediated reduction in the expression of this heterochromatin localized gene leads to arrest at the first instar stage which can be rescued by feeding the larva 20E, E or ketodiol but not 7dC. In addition, spok expression is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development.  相似文献   

20.
The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B′ helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号