首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Comparative analysis of metabolic pathways in different genomes can give insights into the understanding of evolutionary and organizational relationships among species. This type of analysis allows one to measure the evolution of complete processes (with different functional roles) rather than the individual elements of a conventional analysis. We present a new technique for the phylogenetic analysis of metabolic pathways based on the topology of the underlying graphs. A distance measure between graphs is defined using the similarity between nodes of the graphs and the structural relationship between them. This distance measure is applied to the enzyme-enzyme relational graphs derived from metabolic pathways. Using this approach, pathways and group of pathways of different organisms are compared to each other and the resulting distance matrix is used to obtain a phylogenetic tree. RESULTS: We apply the method to the Citric Acid Cycle and the Glycolysis pathways of different groups of organisms, as well as to the Carbohydrate metabolic networks. Phylogenetic trees obtained from the experiments were close to existing phylogenies and revealed interesting relationships among organisms.  相似文献   

2.

Background  

Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution.  相似文献   

3.
4.

Background  

The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships.  相似文献   

5.

Background  

Phylogenetic trees resulting from molecular phylogenetic analysis are available in Newick format from specialized databases but when it comes to phylogenetic networks, which provide an explicit representation of reticulate evolutionary events such as recombination, hybridization or lateral gene transfer, the lack of a standard format for their representation has hindered the publication of explicit phylogenetic networks in the specialized literature and their incorporation in specialized databases. Two different proposals to represent phylogenetic networks exist: as a single Newick string (where each hybrid node is splitted once for each parent) or as a set of Newick strings (one for each hybrid node plus another one for the phylogenetic network).  相似文献   

6.

Background  

In bio-systems, genes, proteins and compounds are related to each other, thus forming complex networks. Although each organism has its individual network, some organisms contain common sub-networks based on function. Given a certain sub-network, the distribution of organisms common to it represents the diversity of its function.  相似文献   

7.

Background  

As phenotypic features derived from heritable characters, the topologies of metabolic pathways contain both phylogenetic and phenetic components. In the post-genomic era, it is possible to measure the "phylophenetic" contents of different pathways topologies from a global perspective.  相似文献   

8.
The information provided by completely sequenced genomes can yield insights into the multi-level organization of organisms and their evolution. At the lowest level of molecular organization individual enzymes are formed, often through assembly of multiple polypeptides. At a higher level, sets of enzymes group into metabolic networks. Much has been learned about the relationship of species from phylogenetic trees comparing individual enzymes. In this article we extend conventional phylogenetic analysis of individual enzymes in different organisms to the organisms' metabolic networks. For this purpose we suggest a method that combines sequence information with information about the underlying reaction networks. A distance between pathways is defined as incorporating distances between substrates and distances between corresponding enzymes. The new analysis is applied to electron-transfer and amino acid biosynthesis networks yielding a more comprehensive understanding of similarities and differences between organisms. Received: 14 August 2000 / Accepted: 4 January 2001  相似文献   

9.

Background  

Structural analysis of cellular interaction networks contributes to a deeper understanding of network-wide interdependencies, causal relationships, and basic functional capabilities. While the structural analysis of metabolic networks is a well-established field, similar methodologies have been scarcely developed and applied to signaling and regulatory networks.  相似文献   

10.

Background  

The size and magnitude of the metabolome, the ratio between individual metabolites and the response of metabolic networks is controlled by multiple cellular factors. A tight control over metabolite ratios will be reflected by a linear relationship of pairs of metabolite due to the flexibility of metabolic pathways. Hence, unbiased detection and validation of linear metabolic variance can be interpreted in terms of biological control. For robust analyses, criteria for rejecting or accepting linearities need to be developed despite technical measurement errors. The entirety of all pair wise linear metabolic relationships then yields insights into the network of cellular regulation.  相似文献   

11.
Wunderlich  Zeba  Mirny  Leonid 《Genome biology》2005,6(13):P15-30

Background  

Understanding the relationships between the structure (topology) and function of biological networks is a central question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and highly-disputed hypothesis. While the structural analysis of interaction networks demonstrates a correlation between the topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic networks, e.g. flux balance analysis (FBA), are more successful in predicting phenotypes of knock-out strains.  相似文献   

12.

Background  

Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required.  相似文献   

13.
14.

Background  

Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses.  相似文献   

15.

Background  

Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA).  相似文献   

16.
17.
18.

Background  

We describe a function-driven approach to the analysis of metabolism which takes into account the phylogenetic origin of biochemical reactions to reveal subtle lineage-specific metabolic innovations, undetectable by more traditional methods based on sequence comparison. The origins of reactions and thus entire pathways are inferred using a simple taxonomic classification scheme that describes the evolutionary course of events towards the lineage of interest. We investigate the evolutionary history of the human metabolic network extracted from a metabolic database, construct a network of interconnected pathways and classify this network according to the taxonomic categories representing eukaryotes, metazoa and vertebrates.  相似文献   

19.

Background  

Genome-scale metabolic reconstructions have been recognised as a valuable tool for a variety of applications ranging from metabolic engineering to evolutionary studies. However, the reconstruction of such networks remains an arduous process requiring a high level of human intervention. This process is further complicated by occurrences of missing or conflicting information and the absence of common annotation standards between different data sources.  相似文献   

20.

Background  

Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号