首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of [7-3H]dehydroepiandrosterone[35S]sulphate into brain tissue elements from the circulatory system and its metabolic fate in the brain were studied in developing rats. Approximately 0.037 % of [3H] and 0.023% of [35S] were incorporated into the brain within 15 min after the intracardiac injection of the labelled steroid. More than one-half of the incorporated [3H] was recovered as free steroid, whereas the rest was recovered as sulphate. The 3H/35S ratio in the sulphate fraction suggested that the sulphate entered the brain with the sulphate linkage intact. Upon intracerebral injection of the double-labelled steroid, approximately 6 per cent of the radioactivity was recovered in the brain at 30 min after the injection and 1 per cent was recovered at 1 h after the injection. Of the remaining radioactivity recovered from the brain, 5 per cent was found in the free steroid fraction, probably formed by hydrolysis of the sulphate; 90 per cent was in the sulphate ester fraction; and the rest was in the fraction of more polar compounds. To identify the metabolites, [4-14C]dehydroepiandrosterone sulphate was injected into the rat brain. Significant amounts of radioactivity were found in androstenediol sulphate, which was isolated from the brain. This compound was apparently derived from dehydroepiandrosterone sulphate by reduction of the 17-keto group to a 17β-hydroxyl group without prior hydrolysis. There was suggestive evidence that free androstenediol was also formed in the brain in this experiment.  相似文献   

2.
Estrone sulphate in rat brain: uptake from blood and metabolism in vivo   总被引:1,自引:1,他引:0  
It Has been well established that the estrogens, estrone and estradiol, enter the brain from the circulatory system. These compounds are concentrated and retained in the hypothalamus and preoptic regions, particularly in the nuclei of the cells in these regions (Mc Ewen , ZIGMOKD, AZMITIA and Weiss , 1970; Zigmond and Mcewen , 1970). In a previous communication from this laboratory we indicated that a small portion of blood bound dehydroepiandrosterone sulfate enters the brain intact and then is converted to free dehydroepiandrosterone and to androstenediol sulfate (Kishimoto and Hoshi , 1972). Estrone sulfate is the most abundant estrogen in plasma at a concentration of 0.349 pg/ml of plasma, a level which is as much as 10-fold higher than that of free estrone and estradiol in both male and female plasma (Loriaux , Ruder and Lipsett , 1971). Therefore, we deemed it important to establish whether estrone sulfate also enters the brain and if it acts as the source of other brain estrogens. In this communication, we wish to report the results obtained by intracardiac and intracerebral injection of [3H] estrone [35S] sulfate into the developing rat.  相似文献   

3.
—3-Methoxy-4-hydroxyphenylglycol (MHPG) formed a sulphate conjugate when incubated with ATP, Mg2+ ions, Na235SO4 and the high-speed supernatant preparations of rabbit or rat brain. The same reactions could be catalysed by similar enzyme preparations from liver. The sulphated product was separated and identified by paper chromatography. On acid hydrolysis, it released both Na235SO4 and the free glycol. The measurement of this labelled sulphate was used as a specific assay procedure for determining the overall sulphoconjugatory process. The pH optimum of the reaction is 7.8. For rabbit brain, the Km for Na2SO4 determined for the activating system is 3.6 × 10−4m , and that for MHPG for the sulphotransferase reaction is 1.05 × 10−4m . The specific enzyme activity, expressed as nmol 35SO4 incorporated/h/mg protein for a 30-min assay is as follows: rat brain, 2.8; rabbit brain, 1.6; rat liver, 33.4and rabbit liver, 15.0. Dithiothreitol at 3 mm concentration had no significant effect on the sulphation of MHPG in all these preparations.  相似文献   

4.
The microsomes from dehydroepiandrosterone (DHEA)-supplemented animals are good hydroxyl radical scavengers, as demonstrated through electron spin resonance and deoxyribose degradation. The ability of DHEA-supplemented microsomes to react with superoxide radical was also demonstrated through the inhibition of nitro-blue tetrazolium reduction determined by superoxide radicals produced in a hypoxanthine–xanthine oxidase system. DHEA-enriched microsomes, obtained from acutely DHEA-treated rats, become resistant to iron-dependent lipid peroxidation triggered by H2O2/FeSO4 and ascorbate/FeSO4. The direct addition of DHEA to microsomes from untreated rats failed to prevent iron-dependent lipid peroxidation, even if the microsomes were preincubated with DHEA for up to 15 min, indicating that in vivo transformation is required before antioxidant action can be exerted. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in brain microsomes was modified in vitro. The inactivation of the enzyme required Mg2+ and ATP or ADP, and an inactivator present both in S105 and microsomes. Inactivation was dependent on inactivator concentration and time of preincubation. The inactive reductase in brain microsomes could be completely reactivated by a factor present in brain S105. Reactivation of the enzyme also depended on incubation time and the activator concentration. Activator activity was inhibited by NaF, a phosphatase inhibitor. Both the inactivator and the activator appear to be proteins. Our data thus suggest that the inactivation and the reactivation of the reductase in brain microsomes occurs via protein-mediated interconversion to phosphorylated and dephosphorylated forms of the enzyme with differing catalytic activity. The HMG-CoA reductase activity increases almost two-fold during isolation of the brain microsomes. This increase in activity is blocked when brain tissue is homogenized in the medium containing NaF. In rat brain about 50% of the reductase exists in an inactive form in both young and adult rats. The low reductase activity in brain of adult animals does not appear to be related to an increase in the proportion of an inactive phosphorylated form of the enzyme. This suggests that developmental change in the reductase activity is not associated with the change in the proportion of phosphorylated and dephosphorylated forms of the enzyme.  相似文献   

6.
Cytochrome P450 17α-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17α-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe2+-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO4. Fe2+ caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe2+-sensitive CYP17-independent pathway.  相似文献   

7.
Agrobacterium sp. M3C, previously isolated from canal-water for its ability to grow on monomethyl sulphate, degraded this ester with stoichiometric liberation of inorganic sulphate. In contrast with the biodegradation of monomethyl sulphate in Hyphomicrobium sp., and of other longer-chain alkyl sulphates in Pseudomonas spp., the pathway in Agrobacterium appeared not to involve a sulphatase enzyme capable of catalysing ester-bond hydrolysis. No such sulphatase was detectable under a range of conditions of bacterial culture, or using various methods for preparing cell-extracts, or different assay conditions. There was no incorporation of 18O-label from H2 18O into the liberated inorganic sulphate. No methanol was detectable during biodegradation, and the organism was incapable of growth on methanol, and did not produce methanol dehydrogenase activity when grown on monomethyl sulphate. Tracer studies using mono[14C]-methyl sulphate indicated that formate serine and glycine were produced during the biodegradation. The presence of these amino acids, together with high activity of hydroxypyruvate reductase, indicated the operation of the serine pathway common in methylotrophs. Use of an oxygen electrode in conjunction with monomethyl[35S]sulphate showed that release of 35SO4 2- was dependent on availability of O2, and that there was equimolar stoichiometry among monomethyl sulphate degraded, O2 consumed and 35SO4 2- released. A proposed pathway for the degradation involved an initial mono-oxygenation to methanediol monosulphate with subsequent elimination of SO4 2- and concomitant formation of formaldehyde. The pathway was compared with degradation mechanisms for other C1 compounds and for other sulphate esters.  相似文献   

8.
The development and regional distribution of ribonucleotide reductase (EC 1.17.4.1) were determined in rat brain. Ribonucleotide reductase was partially purified by ammonium sulfate fractionation (20-40% saturation). Enzyme activity was measured by a specific radiochemical assay. This method involved the reduction of [14C]cytidine diphosphate (CDP) to [14C]deoxy-cytidine diphosphate with subsequent hydrolysis and separation of the product ([14C]deoxycytidine) from substrate ([14C]cytidine) by Dowex-1-borate ion-exchange chro-matography. The specific activity of ribonucleotide reductase in whole brain of newborn rats was 3.78 ± 0.55 units (pmol/h)/mg protein (SEM; n = 6) and declined to 0.17 ± 0.01 units/mg protein (n = 7) at 10-12 weeks of age, with a further decline to 0.11 ± 0.01 units/mg protein (n = 3) at 1 year. Ribonucleotide reductase activity in rat liver decreased from 4.58 ± 0.62 units/mg protein (n = 3) in newborn animals to 0.06 ± 0.01 units/mg protein (n = 7) at 10-12 weeks and was present at trace levels at 6 months of age. The decline in specific activity with age was not due to a change in the Km for CDP. The Km for CDP in brain of newborn and adult rats was 80-90 μM. In 10- to 12-week-old rats, the specific activity of ribonucleotide reductase was similar in the various regions of the brain tested except for the brainstem, which had 50% lower specific activity than the whole brain. These results indicate that ribonucleotide reductase activity is present and widely distributed in adult rat brain.  相似文献   

9.
The incubation of the 35,000 g supernatant of a rat brain stem homogenate in the presence of 7.5 mM-CaC12 for 10 min at 25°C resulted in a more than 2-fold increase in its tryptophan hydroxylase activity. This activation was irreversible and involved a reduction in the molecular weight of the enzyme, from 220,000 to 160,000. The partially proteolysed tryptophan hydroxylase, in contrast to the native enzyme, could not be activated by trypsin, sodium dodecyl sulphate, phosphatidylserine or phosphorylating conditions; dithiothreitol and Fe2+ were the only compounds whose stimulating effect on the enzymatic activity was not prevented by the Ca2+ -induced proteolysis of tryptophan hydroxylase. These findings suggest that the mol. wt. 60,000 fragment removed by the Ca2+ dependent neutral proteinase plays a critical role in the regulatory properties of tryptophan hydroxylase.  相似文献   

10.
the native enzyme was 104,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits with an identical molecular weight of 52,000. The optimum pH of the reaction was 8.0. The Km values for 6-phosphogluconate and NADP were 3.6×10?5m and 1.3 × 10?5m, respectively. The enzyme showed no Mg2𠀫 requirement for the activity, but was activated by Mn2𠀫 and Ca2𠀫. The enzyme was inhibited by sulfhydryl reagents, indicating that a sulfhydryl group may be involved in the active site of the enzyme. The enzyme was also inhibited by NADPH2, ATP, and the intermediates formed during photosynthesis. The substrate 6-phosphogluconate and cofactor NADP partially protected the enzyme from inactivation. The enzyme had enzymological and physicochemical properties similar to enzymes isolated from other sources.  相似文献   

11.
Glutathione reductase (GR; E.C. 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). In this study we tested the effects of Al3+, Ba2+, Ca2+, Li+, Mn2+, Mo6+, Cd2+, Ni2+, and Zn2+ on purified bovine liver GR. In a range of 10?μM–10?mM concentrations, Al3+, Ba2+, Li+, Mn2+, and Mo6+, and Ca2+ at 5?μM–1.25?mM, had no effect on bovine liver GR. Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effects on this enzyme. The obtained IC50 values of Cd2+, Ni2+, and Zn2+ were 0.08, 0.8, and 1?mM, respectively. Cd2+ inhibition was non-competitive with respect to both GSSG (KiGSSG 0.221?±?0.02?mM) and NADPH (KiNADPH 0.113?±?0.008?mM). Ni2+ inhibition was non-competitive with respect to GSSG (KiGSSG 0.313?±?0.01?mM) and uncompetitive with respect to NADPH (KiNADPH 0.932?±?0.03?mM). The effect of Zn2+ on GR activity was consistent with a non-competitive inhibition pattern when the varied substrates were GSSG (KiGSSG 0.320?±?0.018?mM) and NADPH (KiNADPH 0.761?±?0.04?mM), respectively.  相似文献   

12.
Abstract— The enzyme in rat brain responsible for the de-acetylation of N-acetyl-aspartic acid has been partially purified. In contrast to the enzyme from hog kidney which is stable at 70°C, it rapidly denatures above 57°C. The rat brain enzyme has the same Km for its substrate and the same solubility in ammonium sulphate solution as the hog kidney enzyme. Results of migration on starch gel electro-phoreses and isoelectric focusing indicate a pI for the amidohydrolase of 5.1. A variety of potential substrates, modulators, and inhibitors have been examined.  相似文献   

13.
The binding of [3H]-paroxetine to membrane serotonin transporter (SERT) has been studied in membranes from different sources and subcellular fractions. From rat were membranes from venous blood platelets, brain total cortex, brain microsomes, brain crude and purified synaptosomes. Membranes were obtained from venous blood platelets from human volunteers and from brain cortex tissue from neurosurgery (cerebral lobectomies following craniocerebral injuries). The main finding was that the K D of paroxetine binding to the SERT was the same for platelet and nerve ending (synaptosomal) membranes. That parameter was significantly lower in membranes from brain microsomes and cortex total tissue. No species related difference was found, where comparison was possible, between human and rat tissue. The equality of K D of paroxetine binding to blood platelet membranes and to membranes from nerve endings appears to encourage the use of such membranes as a model for brain SERT. Binding at two different temperatures for several of the fractions suggests that paroxetine–SERT interaction is entropy-driven.  相似文献   

14.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

15.
Abstract– The enzymatic hydrolysis by brain homogenate of the sulfate esters of estrone, pregnenolone, dehydroepiandrosterone, testosterone, cholesterol and p-nitrophenol was studied. With homogenate of young rat brain, the pH optima of estrone sulfatase 4 4 The term steroid sulfatase is used as a general name for the enzyme(s) which hydrolyzes the sulfate ester of a steroid. Simplified terms, such as estrone sulfatase, instead of the more formal terms, such as estrone sulfate sulfohydrolase, have been used throughout.
and arysulfatase C (p-nitrophenyl sulfate as substrate) were 8.2 and all other steroid sulfatases had pH optima at 6.6. Apparent Kms for these steroid sulfates were widely different. The highest Km value was 32.2 μm for estrone sulfate and the lowest was 0.66 μm for testosterone sulfate; the Km for p-nitrophenyl sulfate was 30 fold higher than for estrone sulfate. Specific activity was also highest with estrone sulfatase and lowest with testosterone sulfatase; specific activity with aryl sulfatase C was over 3 fold higher than with estrone sulfatase. Estrone sulfatase activity was inhibited noncompetitively by sulfate esters of dehydroepiandrosterone, pregnenolone, and cholesterol; on the other hand, other steroid sulfatases were inhibited by these latter three sulfates competitively. Developmental changes of these sulfohydrolase activities in rat brain were almost identical with the exception of testosterone sulfatase activity; the latter sulfatase had a peak activity at 30 days old, while all other sulfatase had a peak at 20 days old. Thermal stability of all these activities was identical. Testosterone sulfatase activity in neurological mouse mutants, jimpy, msd, and quaking mice, was less than one half of littermate controls, while other steroid sulfatase levels in these mutants' brain were normal. All sulfatase activities were diminished in the brain of a metachromatic leukodystrophy patient with multiple sulfatase deficiency. The brains of classical metachromatic leukodystrophy patients contained normal levels of all steroid sulfatases and arylsulfatase C, with the single exception of testosterone sulfatase which level was less than 50% of control.  相似文献   

16.
Abstract– Rat serum dopamine-β-hydroxylase (DBH) activity decreased 5-7-fold between 15 and 60 days of age. Immunoprecipitation performed with homologous antibody (guinea-pig anti-rat adrenal DBH) showed that during this time period the quantity of antibody necessary to precipitate 50% of the enzymatic activity (AD50) decreased 5-fold from 0.25 to 0.05 μl/ml. The biochemical properties of rat serum DBH at 15 and 60 days of age were compared to test the hypothesis that there might be different biochemical forms of the enzyme in the blood of immature and adult rats. Thermal stability, apparent Km for tyramine, electrophoretic mobility, pH optima and elution profile on gel filtratioh chromatography were all found to be similar for rat serum DBH at both ages. On the basis of homospecific activity and multiple similarities in biochemical characteristics, it appears that differences in serum activity at the two ages reflect differences in the steady-state levels of enzyme. To determine the turnover of serum DBH in the two age groups, the recovery of enzyme activity was monitored after acute clearance of the circulating pool of DBH by treatment with the homologous antiserum. Immunotitration of DBH activity in vivo indicated that the total pool of serum enzyme was 4-fold greater in the mature rat than in 4-day-olds. After treatment of adult rats with 2μl of homologous antiserum, serum DBH activity was reduced by 85% with a half-life of recovery of 3.0 ± 0.6 days; the estimated fractional rate of degradation was 0.23 ± 0.06 day?1 and the rate of entrance was 2.3 ± 0.2 units/ml/day. After treatment of 4-day-old rats with 1 μl of homologous antiserum, serum DBH activity was reduced by 95% with a half-life of recovery of 3.3 ± 0.5 days: the estimated average fractional rate of degradation was 0.22 ± 0.06 day?1 and the average rate of entrance was 10.7 ± 1.6 units/ml/day. Thus, the several-fold difference in steady-state levels of serum DBH in rat pups as compared to adult rats appears to be due to greatly increased rates of entrance of the enzyme in the immature rats.  相似文献   

17.
Rat liver cells grown in primary cultures in the presence of [35S]sulphate synthesize a labelled heparan sulphate-like glycosaminoglycan. The characterization of the polysaccharide as heparan sulphate is based on its resistance to digestion with chondroitinase ABC or hyaluronidase and its susceptibility to HNO2 treatment. The sulphate groups (including sulphamino and ester sulphate groups) are distributed along the polymer in the characteristic block fashion. In 3H-labelled heparan sulphate, isolated after incubation of the cells with [3H]galactose, 40% of the radioactive uronic acid units are l-iduronic acid, the remainder being d-glucuronic acid. The location of heparan sulphate at the rat liver cell surface is demonstrated; part of the labelled polysaccharide can be removed from the cells by mild treatment with trypsin or heparitinase. Further, a purified plasma-membrane fraction isolated from rats previously injected with [35S]sulphate contains radioactively labelled heparan sulphate. A proteoglycan macromolecule composed of heparan sulphate chains attached to a protein core can be solubilized from the membrane fraction by extraction with 6m-guanidinium chloride. The proteoglycan structure is degraded by treatment with papain, Pronase or alkali. The production of heparan [35S]sulphate by rat liver cells incubated in the presence of [35S]sulphate was followed. Initially the amount of labelled polysaccharide increased with increasing incubation time. However, after 10h of incubation a steady state was reached where biosynthetic and degradative processes were in balance.  相似文献   

18.
A sulphotransferase preparation from hen's uterus catalysed the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to N-desulphated heparan sulphate, heparan sulphate, N-desulphated heparin and dermatan sulphate. Heparin, chondroitin sulphate and hyaluronic acid were inactive as substrates for the enzyme. N-desulphated heparin was a much poorer substrate for the enzyme than N-desulphated heparan sulphate suggesting that properties of the substrate other than available glucosaminyl residues influenced enzyme activity. N-acetylation of N-desulphated heparin and N-desulphated heparan sulphate reduced their sulphate acceptor properties so it was unlikely that the N-acetyl groups of heparan sulphate facilitated its sulphatiion. Direct evidence for the transfer of [35S]sulphate to amino groups of N-desulphated haparan sulphate was obtained by subsequent isolation of glucosamine N-[35S]sulphate from heparan [35S]sulphate product. This was made possible through the use of a flavobacterial enzyme preparation which contained “heparitinase” activity but had been essentially freed of sulphatases. Attempts to transfer [35S]sulphate to glucosamine or N-acetylglucosamine were unsuccessfull.  相似文献   

19.
Streptomyces luridiscabiei U05 was isolated from wheat rhizosphere. It produced chitinase, which showed in vitro antifungal properties. The crude enzyme inhibited the growth of Alternaria alternata, Fusarium oxysporum, F. solani, Botrytis cinerea, F. culmorum and Penicillium verrucosum. The chitinase enzyme of the molecular weight of 45 kDa was purified using affinity chromatography of chitin. Streptomyces luridiscabiei U05 produced different chitinolytic enzymes. The highest enzyme activity was observed with the use of 4‐MU‐(GlcNAc), which points to the presence of an β‐N‐acetylhexosaminidase. The optimum activity was obtained at 35–40°C and pH 7–8. The enzyme showed thermostability at 35–40°C during 240 min of preincubation and lost its activity at 50°C and 60°C in 60 min. The chitinase activity from S. luridiscabei U05 was strongly inhibited by Hg2+ and Pb2+ ions, and sodium dodecyl sulphate (SDS). The Ca2+, Cu2+ and Mg2+ ions stimulated the activity of the enzyme.  相似文献   

20.
N-Tyr-MIF-1 (Tyr-Pro-Leu-Gly·NH2), an immunoreactive neuropeptide exhibiting saturable high affinity binding in rat brain was found to be converted into MIF-1 (Pro-Leu-Gly·NH2) by a specific brain aminopeptidase present in rat brain homogenates or cytosol, but with low activity associated with synaptosomal plasma membranes and microsomes. Conversion occurred at a rate of 16 μmol per g w/wt per h and was unaffected by puromycin but inhibited by bestatin (I50, 5 × 10?5 M). Aminopeptidases purified from cytosolic fractions of rat brain (arylamidase), mouse brain (Mn2+-activated aminopeptidase) or porcine kidney (leucine aminopeptidase) were inactive towards N-Tyr-MIF-1 but degraded MIF-1 with release of Leu-Gly·NH2 as detected by RP-HPLC procedures. Morphiceptin (Tyr-Pro-Phe-Pro·NH2), a μ opioid agonist, also acted as a substrate for the N-Tyr-MIF-1 converting enzyme with cleavage of the Tyr-Pro bond. These tetrapeptides, but not MIF-1 or its N-blocked analogs, were degraded in vitro by a metalloendopeptidase purified from kidney membranes. Since dipeptide products were not detected for crude extracts, a significant role for brain metalloendopeptidase on turnover can be excluded. Thus the results point to the presence of a specific (X-Pro-degrading) aminopeptidase in brain cytosol as an enzyme responsible for converting N-Tyr-MIF-1 and inactivating morphiceptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号