首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver 60S ribosomal subunits were irradiated with 254-nm ultraviolet light (1.26 X 10(4) quanta/subunit), under conditions which preserved their functional activity. Cross-linked RNA-protein complexes were recovered after unreacted proteins had been removed by repeated acetic acid extractions. Proteins linked to the whole rRNA, to 5S RNA and to 28-5.8 S RNAs were identified by two-dimensional gel electrophoresis after RNA hydrolysis by ribonucleases T1 and A. Our results showed that numerous proteins interact with rRNAs (at least ten with 28-5.8 S RNA, eight with 5S RNA and among these three are common to both) and have been discussed in the light of all the available data.  相似文献   

2.
A novel 5S RNA-protein (RNP) complex in human and mouse cells has been analyzed using patient autoantibodies. The RNP is small (approximately 7S) and contains most of the nonribosome-associated 5S RNA molecules in HeLa cells. The 5S RNA in the particle is matured at its 3' end, consistent with the results of in vivo pulse-chase experiments which indicate that this RNP represents a later step in 5S biogenesis than a previously described 5S*/La protein complex. The protein moiety of the 5S RNP has been identified as ribosomal protein L5, which is known to be released from ribosomes in a complex with 5S after various treatments of the 60S subunit. Indirect immunofluorescence indicates that the L5/5S complex is concentrated in the nucleolus. L5 may therefore play a role in delivering 5S rRNA to the nucleolus for assembly into ribosomes.  相似文献   

3.
Treatment of E. coli ribosomal subunits with 2-iminothiolane coupled with mild ultraviolet irradiation leads to the formation of a large number of RNA-protein cross-links. In the case of the 30S subunit, a number of sites on 16S RNA that are cross-linked to proteins S7 and S8 by this procedure have already been identified (see ref. 6). Here, by using new or modified techniques for the partial digestion of the RNA and the subsequent isolation of the cross-linked RNA-protein complexes, three new iminothiolane cross-links have been localized: Protein S17 is cross-linked to the 16S RNA within an oligonucleotide encompassing positions 629-633, and protein S21 is cross-linked to two sites within oligonucleotides encompassing positions 723-724 and positions 1531-1542 (the 3'-end of the 16S RNA).  相似文献   

4.
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.  相似文献   

5.
6.
Electrophoresis of the 60-S ribosomal subunits from rat liver in the presence of citrate ions removes the 7 S ribonucleoprotein complex between protein L5 and 5 S RNA though this complex is not released by dialysis or by centrifugation through a sucrose cushion in the same buffer. Using acetate instead of citrate, the subunits remain intact in all cases. On the other hand, in the presence of EDTA, the complex is always released. The poly(U) directed polyphenylalanine synthesis is correlated in each case with the presence of this complex within the subunits. The melting curves of subunits which have been treated with citrate, acetate or EDTA and then taken back in the buffer in which they were stored suggest that the specific RNA-protein interactions are preserved in the presence of acetate and of citrate but not of EDTA. As a whole, the results support the interpretation that the association of protein L5 and 5 S RNA exists within the active subunits.  相似文献   

7.
70S ribosomes from E. coli were chemically cross-linked under conditions of in vitro protein biosynthesis. The ribosomal RNAs were extracted from reacted ribosomes and separated on sucrose gradients. The 5S RNA was shown to contain the ribosomal protein L25 covalently bound. After total RNase T1 hydrolysis of the covalent RNA-protein complex several high molecular weight RNA fragments were obtained and identified by sequencing. One fragment, sequence region U103 to U120, was shown to be directly linked to the protein first by protein specific staining of the particular fragment and second by phosphor cellulose chromatography of the covalent RNA-protein complex. The other two fragments, U89 to G106 and A34 to G51, could not be shown to be directly linked to L25 but were only formed under cross-linking conditions. While the fragment U89 to G106 may be protected from RNase T1 digestion because of a strong interaction with the covalent RNA-protein complex, the formation of the fragment A34 to G51 is very likely the result of a double monovalent modification of two neighbouring guanosines in the 5S RNA. The RNA sequences U103 to U120 established to be in direct contact to the protein L25 within the ribosome falls into the sequence region previously proposed as L25 binding site from studies with isolated 5S RNA-protein complexes.  相似文献   

8.
RNA-protein cross-links were introduced into E. coli 50S ribosomal subunits by treatment with 2-iminothiolane followed by mild ultraviolet irradiation. After partial digestion of the RNA, the cross-linked RNA-protein complexes were separated by our recently published three-step procedure. In cases where this separation was inadequate, a further purification step was introduced, involving affinity chromatography with antibodies to the ribosomal 50S proteins. Analysis of the isolated complexes enabled four new cross-link sites on the 23S RNA to be identified, as well as re-confirming several previously established sites. The new sites are as follows: Protein L2 is cross-linked within an oligonucleotide at positions 1818-1823 in the 23S RNA, protein L4 within positions 320-325, protein L24 within positions 99-107, and protein L27 within positions 2320-2323.  相似文献   

9.
R C Marsh  A Parmeggiani 《Biochemistry》1977,16(7):1278-1283
The role of the 30S ribosomal subunit in the formation of the complex ribosome-guanine nucleotide-elongation factor G (EF-G) has been examined in a great variety of experimental conditions. Our results show that at a large molar excess of EF-G or high concentrations of GTP or GDP, 50S ribosomal subunits are as active alone as with 30S subunits in the formation of the complex, while at lower concentrations of nucleotide or lower amounts of EF-G, addition of the 30S subunit stimulates greatly the reaction. The presence of the 30S ribosomal subunit can also moderate the inhibition of the 50S subunit activity that occurs by increasing moderately the concentrations of K+ and NH4+, and extends upward the concentration range of these monovalent cations in which complex formation is at maximum. The Mg2+ requirement for complex formation with the 50S subunit appears to be slightly less than that needed for association of the 30S and 50S ribosomal subunits. Measurement of the reaction rate constants of the complex formation shows that the 30S ribosomal subunit has only little effect on the initial association of EF-G and guanine nucleotide with the 50S subunit; but once this complex is formed, the 30S subunit increases its stability from 10- to 18-fold. It is concluded that stabilization of the interaction between EF-G and ribosome is a major function of the 30S subunit in the ribosome-EF-G GTPase reaction.  相似文献   

10.
Initiation factor eIF-3 from rat liver forms a binary complex with the small ribosomal subunit. Within this complex, 18S ribosomal RNA can be cross-linked to the 66 000 dalton subunit of eIF-3 by treating the complex with a short bifunctional reagent, diepoxybutane, with a distance of 4A between the reactive groups. In binary complexes containing eIF-3 premodified with the heterobifunctional reagent, methyl-p-azido-benzoylaminoacetimidate (10A), the 66 000 dalton subunit of eIF-3 became covalently bound to 18S rRNA after irradiation of the complex with ultraviolet light. The involvement of only one of the eight eIF-3 subunits in the formation of the covalent RNA-protein complexes indicates a highly specific interaction between 18S rRNA and eIF-3 at the attachment site of the factor on the 40S subunit.  相似文献   

11.
The sulfhydryl-directed fluorescent reagent, 5-iodoacetamidofluorescein (IAF), reacts differently with proteins from the 60 S ribosomal subunit of Saccharomyces cerevisiae when this subunit is free as opposed to being contained within the 80 S ribosome. When the 80 S ribosomes and the free 60 S subunits were labeled with IAF, the specific fluorescence intensity (fluorescence intensity unit/A260 60 S subunit) of the subsequently derived 60 S was 16.3 and 5.4, respectively. Gel analysis showed that proteins L7 and L26 were selectively labeled and contained greater than 90% of the total fluorescent label, when 80 S ribosomes were labeled. When free 60 S subunits were labeled, six additional proteins were labeled. Both types of modified 60 S subunits were equally capable to support protein synthesis in vitro. Reassociation of the IAF-labeled derived and free 60 S subunits with unmodified 40 S subunits resulted in a maximum of 5-7% decrease and a 3-fold increase, respectively, in the fluorescence intensity without a shift in the emission maxima. The data suggest that ribosomal proteins L7 and L26 contain SH groups that respond to ribosomal subunit association and become more reactive in the intact ribosome than in the subunit. The environments of some or all of the additionally labeled proteins are also sensitive to subunit reassociation.  相似文献   

12.
L A Brewer  S Goelz  H F Noller 《Biochemistry》1983,22(18):4303-4309
We have used the reversible, bifunctional reagent ethylene glycol bis[3-(2-ketobutyraldehyde) ether] to cross-link RNA to protein within intact ribosomal subunits from Escherichia coli. Here we describe the synthesis of this compound (termed bikethoxal) and demonstrate its ability to form covalent attachments between RNA and protein in the 5S RNA-L18 complex and within 30S and 50S ribosomal subunits. The reagent is a symmetrical dicarbonyl compound and reacts with guanine in single-stranded RNA and with arginine in protein. RNA-protein cross-links generated with this reagent are stable, as demonstrated by the comigration of 35S-labeled ribosomal proteins with ribosomal RNA on neutrally buffered sodium dodecyl sulfate (SDS)-agarose gels. However, the cross-linked product is unstable in mildly basic conditions, allowing the identification of the linked macromolecules by conventional techniques. The reagent is potentially capable of cross-linking any combination of single-stranded RNA, single-stranded DNA, or protein; it should prove a useful probe of the RNA-protein proximities within the E. coli ribosome, since the SDS-agarose gel system we describe provides a rapid method of optimizing this RNA--protein cross-linking reaction.  相似文献   

13.
When E. coli ribosomal subunits are reacted with 2-iminothiolane and then subjected to a mild ultraviolet irradiation, an RNA-protein cross-linking reaction occurs. About 5% of the total protein in each subunit becomes cross-linked to the RNA, and a specific sub-set of proteins is involved in the reaction. In the case of the 50S subunit, the sites of cross-linking to the 23S RNA have been determined for six of these proteins: protein L4 is cross-linked within an oligonucleotide comprising positions 613-617 in the 23S sequence, L6 within positions 2473-2481, L21 within positions 540-548, L23 within positions 137-141, L27 within positions 2332-2337 and L29 within positions 99-107.  相似文献   

14.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with methyl p-azidophenyl acetimidate. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: Proteins S3, S4, S5 and S8 are cross-linked to the 5'-terminal tetranucleotide of 16S RNA. S5 is also cross-linked to the 16S RNA within an oligonucleotide encompassing positions 559-561. Proteins S11, S9, S19 and S7 are cross-linked to 16S RNA within oligonucleotides encompassing positions 702-705, 1130-1131, 1223-1231 and 1238-1240, respectively. Protein S13 is cross-linked to an oligonucleotide encompassing positions 1337-1338, and is also involved in an anomalous cross-link within positions 189-191. Protein S21 is cross-linked to the 3'-terminal dodecanucleotide of the 16S RNA.  相似文献   

15.
We have previously developed [(1987) Biochemistry 26, 5200-5208] the use of trans-diamminedichloroplatinum(II) to induce reversible RNA-protein crosslinks in the ribosomal 30 S subunit. Protein S18 and, to a lesser extent, proteins S13/S14, S11, S4 and S3 could be crosslinked to the 16 S rRNA. The aim of the present work was to identify the crosslinking sites of protein S18. Three sites could be detected: a major one located in region 825-858, and two others located in regions 434-500 and 233-297. This result is discussed in the light of current knowledge of the topographical localization of S18 in the 30 S subunit and of its relation with function.  相似文献   

16.
A prerequisite for topographical studies on ribosomal subunits involving RNA-protein cross-linking is that the cross-linking sites on the RNA should be determined. Methodology is presented which offers a solution to this problem, using as a test system 30S subunits in which protein S7 has been cross-linked to the 16S RNA by ultraviolet irradiation. The method is based on a gel separation system in the presence of a non-ionic detergent. When a ribonucleoprotein fragment containing RNA-protein cross-links is applied to this system, non-cross-linked protein is removed, and simultaneously the cross-linked RNA-protein complex is separated from non-cross-linked RNA. Oligonucleotide analysis of the S7-RNA complex isolated in this manner showed it to consist of a region of RNA from sections P-A of the 16S RNA. A single characteristic oligonucleotide was absent from this region, and it was tentatively concluded that this missing oligonucleotide contains the actual site of cross-linking.  相似文献   

17.
18.
Direct RNA-protein contacts have been studied by means of ultraviolet-induced (254 nm) cross-links inside complexes of NAcPhe-tRNAPhe, Phe-tRNAPhe and deacylated tRNAPhe with poly(U)-charged 30S subunit of Escherichia coli ribosome. In the first two complexes tRNA directly contacts with the similar sets of proteins (S4, S5, S7, S9/S11; S6 and S8 are found only in the second complex). These sets are similar to that in the fMet-tRNAfMet X 30S X mRNA complex, evidencing similar disposition of tRNAs in these three complexes. 16S RNA contacts in free 30S subunit mainly with proteins S4, S7 and S9/S11. In both complexes, containing NAcPhe-tRNAPhe and Phe-tRNAPhe, 16S RNA contacts with essentially the same proteins (S4, S5, S7, S8, S9/S11, S10, S15, S16 and S17) and in the same ratio, evidencing similar conformation of 30S subunit in these two complexes. In the third complex deacylated tRNAPhe contacts with proteins S4, S5, S6, S8, S9/S11 and S15, 16S RNA-protein interaction differs from those in the first two complexes by a remarkable decrease of cross-linked proteins S8, and S9/S11 and by the appearance of a large amount of cross-linked proteins(s) S13/S14. Hence, this complex differs from the first two by conformation of 30S subunit and, probably, by disposition and/or conformation of tRNA.  相似文献   

19.
A ribosomal protein binding site in the eukaryotic 5S rRNA has been delineated by examining the effect of sequence variation and nucleotide modification on the RNA's ability to exchange into the EDTA-released, yeast ribosomal 5S RNA-protein complex. 5S RNAs of divergent sequence from a variety of eukaryotic origins could be readily exchanged into the yeast complex but RNA from bacterial origins was rejected. Nucleotide modifications in any of three analogous helical regions in eukaryotic 5S RNAs of differing origin reduced the ability of this RNA molecule to form homologous or heterologous RNA-protein complexes. Because sequence comparisons did not indicate common nucleotide sequences in the interacting helical regions, a model is suggested in which the eukaryotic 5S RNA binding protein does not simply recognize specific nucleotide sequences but interacts with three strategically oriented helical domains or functional groups within these domains. Two of the domains bear a limited sequence homology with each other and contain an unpaired nucleotide or "bulge" similar to that recently reported for one of the 5S RNA binding proteins in Escherichia coli (Peattie, D.A., Douthwaite, S., Garrett, R.A. and Noller, H.F. (1981) Proc. Natl. Acad. Sci. 78, 7331-7335). The results further indicate that the single ribosomal protein of eukaryotic 5S RNA-protein complexes interacts with the same region of the 5S rRNA molecule as do the multiple protein components in complexes of prokaryotic origin.  相似文献   

20.
R H Xiang  J C Lee 《Biochimie》1989,71(11-12):1201-1204
RNA-protein crosslinks were introduced into the 40S ribosomal subunits from Saccharomyces cerevisiae by mild UV treatment. Proteins crosslinked to the 18S rRNA molecule were separated from free proteins by repeated extraction of the treated subunits and centrifugation in glycerol gradients. After digestion with RNase to remove the RNA molecules, proteins were radio-labeled with 125I and identified by electrophoresis on two-dimensional polyacrylamide gels with carrier total 40S ribosomal proteins and autoradiography. Proteins S2, S7, S13, S14, S17/22/27, and S18 were linked to the 18S rRNA. A shorter period of irradiation resulted in crosslinking of S2 and S17/22/27 only. Several of these proteins were previously demonstrated to be present in ribosomal core particles or early assembled proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号