首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.  相似文献   

2.
Vsr DNA mismatch endonuclease is the key enzyme of very short patch (VSP) DNA mismatch repair and nicks the T-containing strand at the site of a T-G mismatch in a sequence-dependent manner. MutS is part of the mutHLS repair system and binds to diverse mismatches in DNA. The function of the mutL gene product is currently unclear but mutations in the gene abolish mutHLS -dependent repair. The absence of MutL severely reduces VSP repair but does not abolish it. Purified MutL appears to act catalytically to bind Vsr to its substrate; one-hundredth of an equivalent of MutL is sufficient to bring about a significant effect. MutL enhances binding of MutS to its substrate 6-fold but does so in a stoichiometric manner. Mutational studies indicate that the MutL interaction region lies within the N-terminal 330 amino acids and that the MutL multimerization region is at the C-terminal end. MutL mutant monomeric forms can stimulate MutS binding.  相似文献   

3.
Vsr mediates very short patch repair in Escherichia coli, correcting T/G mismatches caused by deamination of 5-methylcytosine to thymine. MutS and MutL, part of the post-replication mismatch repair system, stimulate VSP repair. In this study, we use a bacterial two-hybrid assay to show that MutL interacts with Vsr. We also show that interaction between Vsr and MutL inhibits the ability of MutL to dimerize, to interact with MutS and MutH and to mediate a previously unknown interaction between MutS and MutH. This inhibition may explain why high levels of Vsr are mutagenic in vivo. In addition, we show that the Mut fusion proteins are repair proficient in the bacterial two-hybrid assay, making it possible to study their interactions in various genetic backgrounds, or in the presence of DNA damaging agents.  相似文献   

4.
The activities of the Vsr and MutH endonucleases of Escherichia coli are stimulated by MutL. The interaction of MutL with each enzyme is enhanced in vivo by 2-aminopurine treatment and by inactivation of the mutY gene. We hypothesize that MutL recruits the endonucleases to sites of DNA damage.The Escherichia coli Dcm protein methylates the second C of CCWGG sites (W = A or T). Deamination of 5-methylcytosine converts CG base pairs to T/G mismatches, causing CCWGG-to-CTWGG transition mutations. Very-short-patch (VSP) repair minimizes these mutations (2). Repair is initiated by a sequence- and mismatch-specific endonuclease, Vsr, which cleaves the DNA 5′ of the T. DNA polymerase I removes the T along with a few 3′ nucleotides and resynthesizes the missing bases, restoring the CG base pair. Vsr is both necessary and sufficient for initiating VSP repair. However, two other proteins, MutS and MutL, enhance VSP repair of deamination damage (1).MutS and MutL are best known for their roles in postreplication mismatch repair (MMR) (9, 11). MutL couples mismatch recognition by MutS to the activation of MutH, an endonuclease that cleaves the unmethylated strand of GATC sequences that are transiently hemimethylated following DNA replication. The nicked strand, containing the erroneous base, is removed by the UvrD helicase and one of several exonucleases to beyond the mismatch and then resynthesized by DNA polymerase III.MutL stimulates the endonuclease activities of both Vsr and MutH in vitro (8, 17). The requirements for stimulation are the same: a mismatch, MutS, and ATP hydrolysis by MutL (8, 8a). Cross-linking studies showed that MutH and Vsr interact with the same region in the N-terminal domain of MutL (Heinze et al., submitted). Competition of Vsr with MutH for access to MutL explains the ability of Vsr to inactivate MMR in vivo when overexpressed (6, 13). Thus, the interactions of the two repair endonucleases with MutL are structurally and functionally very similar.In contrast to MMR, where the cleavage site for MutH may be several kilobases away from the mismatch, VSP repair requires that mismatch recognition and endonucleolytic cleavage occur at the same C(T/G)WGG site. How MutS and MutL stimulate VSP repair if MutS and Vsr compete for the same mismatch remains unknown (2, 12). We hypothesized that MutS binds the mismatch first and that a MutS-MutL complex then recruits Vsr. If so, then the MMR proteins would initially mask the mismatch, making the interaction of Vsr with MutL independent of lesion identity.To test this hypothesis, we studied the interaction of MutL with Vsr and with MutH in response to two types of mismatch by using a bacterial two-hybrid assay (10). This assay detects all known interactions among the Mut proteins: homodimerization of MutS and MutL, interaction of MutL with MutS and with MutH, and interaction of Vsr with the N-terminal domain of MutL (15). We found no false positives or false negatives. Furthermore, since the assay relies on reconstitution of a soluble protein (adenylate cyclase), the DNA repair proteins are free to interact with the DNA (Fig. (Fig.11).Open in a separate windowFIG. 1.Known interactions among repair proteins as detected by the bacterial two-hybrid assay. The T18 and T25 subunits of CyaA are fused to any two repair proteins (illustrated here by MutL and Vsr), allowing measurement of all pairwise interactions as units of β-galactosidase (β-gal). T25 fusions are repair proficient. CRP, cyclic AMP (cAMP) receptor protein; P, lac operon promoter; RNAP, RNA polymerase.2-Aminopurine (2AP) mispairs with C during DNA replication, causing transition and frameshift mutations (5). The transitions are due primarily to the mismatch itself; the frameshifts are due to saturation of MMR, which leaves slipped-strand intermediates caused by DNA replication errors unrepaired (19). MutS and MutL bind to 2AP/C lesions (22), although the lesions may not be subject to MMR (19). As shown in Fig. Fig.2,2, treatment with 2AP causes a dose-dependent increase in the interaction of MutL with both Vsr and MutH; dimerization of MutL and interaction of MutL with MutS are somewhat increased.Open in a separate windowFIG. 2.Effect of 2AP treatment on protein-protein interactions in the bacterial two-hybrid assay. Results in units of β-galactosidase ± standard errors of the means (n = 9) are shown for BTH101(F galE15 ga1K16 rpsL1 hsdR2 mcrA1 mcrB1 cyaA-99) cells treated with 2AP as described previously (5, 19). Cells were cotransformed with pT18 and pT25 vectors (light gray bars), pT18-mutS and pT25-mutL (white bars), pT18-vsr and pT25-mutL (gray bars), pT18-mutH and pT25-mutL (black bars), or pT18-mutL and pT25-mutL (mottled bars). (NB: The dose-response curve for the pT18-mutS pT25-mutS transformants is similar to that of the pT18-mutL pT25-mutL transformants; it has been omitted for graphical clarity since the MutS-MutS interaction gives very high units of β-galactosidase activity [15]).The MutY adenine glycosylase removes A''s which have mispaired with oxidized guanine (8-oxoG) during DNA replication. Cells with a deletion of mutY have an elevated frequency of CG-to-AT transversion mutations (18); these are reduced by excess MutS, suggesting that 8-oxoG/A mismatches are also subject to MMR (23). As shown in Fig. Fig.3,3, the interactions between Vsr and MutL and between MutH and MutL increase in a mutY cell (stippled bars). Other interactions, such as MutS dimerization, are unaffected (not shown).Open in a separate windowFIG. 3.Effects of mutY and mutT deletions on protein-protein interactions in the bacterial two-hybrid assay. Results are in units of β-galactosidase, relative to the level in the wild type, in mutT (solid) and mutY (stippled) derivatives of BTH101 cotransformed with pT18 and pT25 vectors, pT18-mutH and pT25-mutL, pT18-vsr and pT25-mutL, or pT18-mutS and pT25-mutS (n = 3).8-OxoG/A mismatches also arise by incorporation of oxidized dGTP opposite A during DNA replication. The MutT nuclease minimizes this by removing oxidized dGTP from the nucleotide pool. The high frequency of AT-to-CG mutations in mutT strains is unaffected by the status of the MMR system (7, 21, 23), possibly because these 8-oxoG/A mispairs are in a conformation that MutS does not recognize. As shown in Fig. Fig.3,3, neither the interaction between MutL and Vsr nor that between MutL and MutH is elevated in a mutT strain (solid bars).These data show that mismatches which attract MutS and MutL increase the interaction of MutL with MutH in vivo. Although these mismatches are not subject to VSP repair, they also increase the interaction between MutL and Vsr. The simplest interpretation is that a MutS-MutL complex recruits MutH and Vsr to the DNA independent of the identity of the mismatch. MutS and MutL could then clear the mismatch, delivering the (activated) endonuclease to its specific target site, no matter how far away it is.Interaction of MutL with MutH, leading to MMR, is probably the default option. However, the MutS-MutL complex may recruit other repair proteins, such as Vsr or UvrB (20), to lesions that are poorly processed by MMR. The T/G mismatch in hemimethylated CTWGG sequences may be one such site. Vsr is expressed at very low levels in growing cells (14), so this recruitment would enhance VSP repair. However, recruitment of Vsr to other lesions would reduce VSP repair. For example, recruitment of Vsr by MutL to 2AP/C lesions (Fig. (Fig.2)2) could explain why CCWGG sites are hotspots for 2AP-induced mutations (4, 19).We have argued that Vsr is kept at low levels while DNA is replicating to avoid interference with MMR (14). However, if, as we suggest here, MutS and MutL are needed to recruit scarce Vsr to its target sequence, this argument loses its merit. It seems more likely that Vsr levels are kept low to avoid CTWGG-to-CCWGG mutations; Vsr creates these mutations by converting T/G mismatches formed at CTAGG sites by errors in DNA replication to CG (3, 6, 16). Vsr levels rise in nongrowing cells (14), when mutagenesis is no longer a risk. Under these circumstances, it is likely that MutS and MutL are no longer required for efficient VSP repair.  相似文献   

5.
Strand discrimination in Escherichia coli DNA mismatch repair requires the activation of the endonuclease MutH by MutL. There is evidence that MutH binds to the N-terminal domain of MutL in an ATP-dependent manner; however, the interaction sites and the molecular mechanism of MutH activation have not yet been determined. We used a combination of site-directed mutagenesis and site-specific cross-linking to identify protein interaction sites between the proteins MutH and MutL. Unique cysteine residues were introduced in cysteine-free variants of MutH and MutL. The introduced cysteines were modified with the cross-linking reagent 4-maleimidobenzophenone. Photoactivation resulted in cross-links verified by mass spectrometry of some of the single cysteine variants to their respective Cys-free partner proteins. Moreover, we mapped the site of interaction by cross-linking different combinations of single cysteine MutH and MutL variants with thiol-specific homobifunctional cross-linkers of varying length. These results were used to model the MutH.MutL complex and to explain the ATP dependence of this interaction.  相似文献   

6.
The UvrD helicase and its modulation by the mismatch repair protein MutL   总被引:6,自引:0,他引:6  
UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair.  相似文献   

7.
The Escherichia coli MutS and MutL proteins have been conserved throughout evolution, although their combined functions in mismatch repair (MMR) are poorly understood. We have used biochemical and genetic studies to ascertain a physiologically relevant mechanism for MMR. The MutS protein functions as a regional lesion sensor. ADP-bound MutS specifically recognizes a mismatch. Repetitive rounds of mismatch-provoked ADP-->ATP exchange results in the loading of multiple MutS hydrolysis-independent sliding clamps onto the adjoining duplex DNA. MutL can only associate with ATP-bound MutS sliding clamps. Interaction of the MutS-MutL sliding clamp complex with MutH triggers ATP binding by MutL that enhances the endonuclease activity of MutH. Additionally, MutL promotes ATP binding-independent turnover of idle MutS sliding clamps. These results support a model of MMR that relies on two dynamic and redundant ATP-regulated molecular switches.  相似文献   

8.
The MutL ATPase is required for mismatch repair   总被引:9,自引:0,他引:9  
Members of the MutL family contain a novel nucleotide binding motif near their amino terminus, and the Escherichia coli protein has been found to be a weak ATPase (Ban, C., and Yang, W. (1998) Cell 95, 541-552). Genetic analysis has indicated that substitution of Lys for Glu-32 within this motif of bacterial MutL results in a strong dominant negative phenotype (Aronshtam, A., and Marinus, M. G. (1996) Nucleic Acids Res. 24, 2498-2504). By in vitro comparison of MutL-E32K with the wild type protein, we show the mutant protein to be defective in DNA-activated ATP hydrolysis, as well as MutS- and MutL-dependent activation of the MutH d(GATC) endonuclease and the mismatch repair excision system. MutL-E32K also acts in dominant negative manner in the presence of wild type MutL in vitro, inhibiting the overall mismatch repair reaction, as well as MutH activation. As judged by protein affinity chromatography, MutL and MutL-E32K both support formation of ternary complexes that also contain MutS and MutH or MutS and DNA helicase II. These findings imply that the MutL nucleotide binding center is required for mismatch repair and suggest that the dominant negative behavior of the MutL-E32K mutation is due to the formation of dead-end complexes in which the MutL-E32K protein is unable to transduce a signal from MutS that otherwise results in mismatch-dependent activation of the MutH d(GATC) endonuclease or the unwinding activity of helicase II.  相似文献   

9.
The crystal structure of the Escherichia coli Vsr endonuclease bound to a C(T/G)AGG substrate revealed that the DNA is held by a pincer composed of a trio of aromatic residues which intercalate into the major groove, and an N-terminus alpha helix which lies across the minor groove. We have constructed an N-terminus truncation (Delta14) which removes most of the alpha helix. The mutant is still fairly proficient in mediating very short patch repair. However, its endonuclease activity is considerably reduced and, in contrast to that of the wild type protein, cannot be stimulated by MutL. We had shown previously that excess Vsr in vivo causes mutagenesis, probably by inhibiting the participation of MutL in mismatch repair. The Delta14 mutant has diminished mutagenicity. In contrast, four enzymatically inactive mutants, with intact N-termini, are as mutagenic as the wild type protein. On the basis of these results we suggest that MutL causes a conformational change in the N-terminus of Vsr which enhances Vsr activity, and that this functional interaction between Vsr and MutL decreases the ability of MutL to carry out mismatch repair.  相似文献   

10.
Mismatch repair (MMR) is an evolutionarily conserved DNA repair system, which corrects mismatched bases arising during DNA replication. MutS recognizes and binds base pair mismatches, while the MutL protein interacts with MutS-mismatch complex and triggers MutH endonuclease activity at a distal-strand discrimination site on the DNA. The mechanism of communication between these two distal sites on the DNA is not known. We used functional fluorescent MMR proteins, MutS and MutL, in order to investigate the formation of the fluorescent MMR protein complexes on mismatches in real-time in growing Escherichia coli cells. We found that MutS and MutL proteins co-localize on unrepaired mismatches to form fluorescent foci. MutL foci were, on average, 2.7 times more intense than the MutS foci co-localized on individual mismatches. A steric block on the DNA provided by the MutHE56A mutant protein, which binds to but does not cut the DNA at the strand discrimination site, decreased MutL foci fluorescence 3-fold. This indicates that MutL accumulates from the mismatch site toward strand discrimination site along the DNA. Our results corroborate the hypothesis postulating that MutL accumulation assures the coordination of the MMR activities between the mismatch and the strand discrimination site.  相似文献   

11.
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.  相似文献   

12.
In Escherichia coli and related bacteria, the very-short-patch (VSP) repair pathway uses an endonuclease, Vsr, to correct T-G mismatches that result from the deamination of 5-methylcytosines in DNA to C-G. The products of mutS and mutL, which are required for adenine methylation-directed mismatch repair (MMR), enhance VSP repair. Multicopy plasmids carrying mutS alleles that are dominant negative for MMR were tested for their effects on VSP repair. Some mutS mutations (class I) did not lower VSP repair in a mutS(+) background, and most class I mutations increased VSP repair in mutS cells more than plasmids containing mutS(+). Other plasmid-borne mutS mutations (class II) and mutS(+) decreased VSP repair in the mutS(+) background. Thus, MutS protein lacking functions required for MMR can still participate in VSP repair, and our results are consistent with a model in which MutS binds transiently to the mispair and then translocates away from the mispair to create a specialized structure that enhances the binding of Vsr.  相似文献   

13.
The MutH protein, which is part of the Dam-directed mismatch repair system of Escherichia coli, introduces nicks in the unmethylated strand of a hemi-methylated DNA duplex. The latent endonuclease activity of MutH is activated by interaction with MutL, another member of the repair system. The crystal structure of MutH suggested that the active site residues include Asp70, Glu77 and Lys79, which are located at the bottom of a cleft where DNA binding probably occurs. We mutated these residues to alanines and found that the mutant proteins were unable to complement a chromosomal mutH deletion. The purified mutant proteins were able to bind to DNA with a hemi-methylated GATC sequence but had no detectable endonuclease activity with or without MutL. Although the data are consistent with the prediction of a catalytic role for Asp70, Glu77 and Lys79, it cannot be excluded that they are also involved in binding to MutL.  相似文献   

14.
DNA mismatch repair and mutation avoidance pathways   总被引:28,自引:0,他引:28  
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.  相似文献   

15.
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLα, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLα heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLα. According to our model, this domain of MutLα comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLα is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLα. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLα in vitro.  相似文献   

16.
In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we—for the first time—record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.  相似文献   

17.
The Escherichia coli very short patch (VSP) repair pathway corrects thymidine-guanine mismatches that result from spontaneous hydrolytic deamination damage of 5-methyl cytosine. The VSP repair pathway requires the Vsr endonuclease, DNA polymerase I, a DNA ligase, MutS, and MutL to function at peak efficiency. The biochemical roles of most of these proteins in the VSP repair pathway have been studied extensively. However, these proteins have not been studied together in the context of VSP repair in an in vitro system. Using purified components of the VSP repair system in a reconstitution reaction, we have begun to develop an understanding of the role played by each of these proteins in the VSP repair pathway and have gained insights into their interactions. In this report we demonstrate an in vitro reconstitution of the VSP repair pathway using a plasmid DNA substrate. Surprisingly, the repair track length can be modulated by the concentration of DNA ligase. We propose roles for MutL and MutS in coordination of this repair pathway.  相似文献   

18.
Structure and function of mismatch repair proteins   总被引:13,自引:0,他引:13  
Yang W 《Mutation research》2000,460(3-4):245-256
DNA mismatch repair is required for maintaining genomic stability and is highly conserved from prokaryotes to eukaryotes. Errors made during DNA replication, such as deletions, insertions and mismatched basepairs, are substrates for mismatch repair. Mismatch repair is strand-specific and targets only the newly synthesized daughter strand. To initiate mismatch repair in Escherichia coli, three proteins are essential, MutS, for mismatch recognition, MutH, for introduction of a nick in the target strand, and MutL, for mediating the interactions between MutH and MutS. Homologues of MutS and MutL important for mismatch repair have been found in nearly all organisms. Mutations in MutS and MutL homologues have been linked to increased cancer susceptibility in both mice and humans. Here, we review the crystal structures of the MutH endonuclease, a conserved ATPase fragment of MutL (LN40), and complexes of LN40 with various nucleotides. Based on the crystal structure, the active site of MutH has been identified and an evolutionary relationship between MutH and type II restriction endonucleases established. Recent crystallographic and biochemical studies have revealed that MutL operates as a molecular switch with its interactions with MutH and MutS regulated by ATP binding and hydrolysis. These crystal structures also shed light on the general mechanism of mismatch repair and the roles of Mut proteins in preventing mutagenesis.  相似文献   

19.
DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O(6)-methylguanine (O(6)mG), which stably pairs with thymine during replication and thereby creates a promutagenic O(6)mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O(6)mG:T mismatches can lead to cell death or result in G:C-->A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O(6)mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O(6)mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O(6)mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O(6)mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O(6)mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O(6)mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs.  相似文献   

20.
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号