首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 +/- 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 +/- 0.40 liter (P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 +/- 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 +/- 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest (P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.  相似文献   

2.
We determined the effects of augmented expiratory intrathoracic pressure (P(ITP)) production on cardiac output (Q(TOT)) and blood flow distribution in healthy dogs and dogs with chronic heart failure (CHF). From a control expiratory P(ITP) excursion of 7 +/- 2 cmH2O, the application of 5, 10, or 15 cmH2O expiratory threshold loads increased the expiratory P(ITP) excursion by 47 +/- 23, 67 +/- 32, and 118 +/- 18% (P < 0.05 for all). Stroke volume (SV) rapidly decreased (onset <10 s) with increases in the expiratory P(ITP) excursion (-2.1 +/- 0.5%, -2.4 +/- 0.9%, and -3.6 +/- 0.7%, P < 0.05), with slightly smaller reductions in Q(TOT) (0.8 +/- 0.6, 1.0 +/- 1.1, and 1.8 +/- 0.8%, P < 0.05) owing to small increases in heart rate. Both Q(TOT) and SV were restored to control levels when the inspiratory P(ITP) excursion was augmented by the addition of an inspiratory resistive load during 15 cmH2O expiratory threshold loading. The highest level of expiratory loading significantly reduced hindlimb blood flow by -5 +/- 2% owing to significant reductions in vascular conductance (-7 +/- 2%). After the induction of CHF by 6 wk of rapid cardiac pacing at 210 beats/min, the expiratory P(ITP) excursions during nonloaded breathing were not significantly changed (8 +/- 2 cmH2O), and the application of 5, 10, and 15 cmH2O expiratory threshold loads increased the expiratory P(ITP) excursion by 15 +/- 7, 23 +/- 7, and 31 +/- 7%, respectively (P < 0.05 for all). Both 10 and 15 cmH2O expiratory threshold loads significantly reduced SV (-3.5 +/- 0.7 and -4.2 +/- 0.7%, respectively) and Q(TOT) (-1.7 +/- 0.4 and -2.5 +/- 0.4%, P < 0.05) after the induction of CHF, with the reductions in SV predominantly occurring during inspiration. However, the augmentation of the inspiratory P(ITP) excursion now elicited further decreases in SV and Q(TOT). Only the highest level of expiratory loading significantly reduced hindlimb blood flow (-4 +/- 2%) as a result of significant reductions in vascular conductance (-5 +/- 2%). We conclude that increases in expiratory P(ITP) production-similar to those observed during severe expiratory flow limitation-reduce cardiac output and hindlimb blood flow during submaximal exercise in health and CHF.  相似文献   

3.
This study presents the comparison of two different noninvasive techniques for the estimation of cardiac output (Q). The two techniques used were transthoracic impedance plethysmography (Z) and the indirect Fick CO2 rebreathing (RB) method. Paired estimates of Q were made on 60 different male subjects at rest and during graded increments of work on a cycle ergometer. The mean resting Q as measured by the Z technique (COZ) was 7.46 +/- 0.35 and 5.96 +/- 0.43 l/min using the RB (CORB) technique. At 200 W the mean COZ was 18.67 +/- 0.72 l/min and the CORB was 23.73 +/- 0.84 l/min. Both the techniques were linearly correlated (R) with O2 consumption; i.e., RZ = 0.752, RRB = 0.855. The difference between these two R values is statistically significant (P less than 0.001). A linear relationship was found between the Z and RB techniques at all work loads (R = 0.75). This study suggests that both techniques are equally as reliable over a large range of work loads, with the Z technique being the simplest and most efficient to implement. It was also found that lung volume had no effect on the calculated COZ.  相似文献   

4.
We examined the effects of external mechanical loading on glottic dimensions in 13 normal subjects. When flow-resistive loads of 7, 27, and 48 cmH2O X l-1 X s, measured at 0.2 l/s, were applied during expiration, glottic width at the mid-tidal volume point in expiration (dge) was 2.3 +/- 12, 37.9 +/- 7.5, and 38.3 +/- 8.9% (means +/- SE) less than the control dge, respectively. Simultaneously, mouth pressure (Pm) increased by 2.5 +/- 4, 3.0 +/- 0.4, and 4.6 +/- 0.6 cmH2O, respectively. When subjects were switched from a resistance to a positive end-expiratory pressure at comparable values of Pm, both dge and expiratory flow returned to control values, whereas the level of hyperinflation remained constant. Glottic width during inspiration (unloaded) did not change on any of the resistive loads. There was a slight inverse relationship between the ratio of expiratory to inspiratory glottic width and the ratio of expiratory to inspiratory duration. Our results show noncompensatory glottic narrowing when subjects breathe against an expiratory resistance and suggest that the glottic dimensions are influenced by the time course of lung emptying during expiration. We speculate that the glottic constriction is related to the increased activity of expiratory medullary neurons during loaded expiration and, by increasing the internal impedance of the respiratory system, may have a stabilizing function.  相似文献   

5.
In 11 healthy subjects (8 males and 3 females, age 21-59 yr) left ventricular end-diastolic (LVEDV) and end-systolic (LVESV) volumes were measured in the supine position by isotope cardiography at rest and during two submaximal one-legged exercise loads before and 1 h after acute plasma expansion (PE) by use of a 6% dextran solution (500-750 ml). After PE, blood volume increased from 5.22 +/- 0.92 to 5.71 +/- 1.02 (SD) liters (P < 0.01). At rest, cardiac output increased 30% (5.3 +/- 1.0 to 6.9 +/- 1.6 l/min; P < 0.01), stroke volume increased from 90 +/- 20 to 100 +/- 28 ml (P < 0.05), and LVEDV increased from 134 +/- 29 to 142 +/- 40 ml (NS). LVESV was unchanged (44 +/- 11 and 42 +/- 14 ml). Heart rate rose from 60 +/- 7 to 71 +/- 10 beats/min (P < 0.01). The cardiac preload [central venous pressure (CVP)] was insignificantly elevated (4.9 +/- 2.1 and 5.3 +/- 3.0 mmHg); systemic vascular resistance and arterial pressures were significantly reduced (mean pressure fell from 91 +/- 11 to 85 +/- 11 mmHg, P < 0.01). Left ventricular peak filling and peak ejection rates both increased (19 and 14%, respectively; P < 0.05). During exercise, cardiac output remained elevated after PE compared with the control situation, predominantly due to a 10- to 14-ml rise in stroke volume caused by an increased LVEDV, whereas LVESV was unchanged. CVP increased after PE by 2.1 and 3.0 mmHg, respectively (P < 0.05).2+ remained unchanged during exercise compared with rest after PE in  相似文献   

6.
The present study was carried out on seven healthy ponies to examine the extent of blood flow in various inspiratory and expiratory muscles at rest and during maximal exertion as well as to determine the proportion of cardiac output needed to perfuse respiratory muscles during these conditions. Tissue blood flow was studied with 15 micron-diameter radionuclide-labeled microspheres injected into the left ventricle during steady conditions. The inspiratory and expiratory muscles comprised 2.41 and 3.05% of body weight, respectively, and received 6.17 and 3.75% of the cardiac output at rest. With maximal exercise, heart rate (from 55 +/- 3 to 218 +/- 4 beats/min), mean aortic pressure (from 125 +/- 5 to 170 +/- 6 mmHg), and cardiac output (from 96 +/- 11 to 730 +/- 78 ml.min-1.kg-1) increased markedly. During exercise blood flow increased significantly in all respiratory muscles (P less than 0.0001) as vascular resistance decreased precipitously. Marked heterogeneity of perfusion existed among various inspiratory as well as expiratory muscles during exercise. Among the inspiratory muscles, the highest perfusion occurred in the diaphragm followed by serratus ventralis, and among the expiratory muscles, the highest perfusion occurred in the internal oblique abdominis and the transverse thoracis (triangularis sterni). Collectively, the inspiratory (8.44%) and expiratory (6.35%) muscle blood flow comprised 14.8 +/- 1.2% of the cardiac output during maximal exercise, a significant increase above resting value, whereas renal fraction of cardiac output decreased from 21% (at rest) to 0.72%.  相似文献   

7.
Lung volumes in sex-, age-, height-, and weight-matched Black subjects are 10-15% lower than those in Caucasians. To determine whether this decreased lung volume affected the ventilatory adaptation to exercise, minute ventilation (VE), its components, frequency (f) and tidal volume (VT), and breathing pattern were observed during incremental cycle-ergometer exercise. Eighteen Caucasian (age 8-30 yr) and 14 Black (age 8-25 yr) subjects were studied. Vital capacity (VC) was lower (P less than 0.001) in the Black subjects [90.6 +/- 8.6 (SD) vs. 112.9 +/- 9.9% predicted], whereas functional residual capacity/total lung capacity was higher (P less than 0.05). VE, mixed expired O2 and CO2, VT, f, and inspiratory (TI), expiratory (TE), and total respiratory cycle (TT) duration were measured during the last 30 s of each 2-min load. Statistical comparisons with increasing power output were made at rest and from 0.6 to 2.4 W/kg in 0.3-W/kg increments. VE was higher in Blacks at all work loads and reached significance (P less than 0.05) at 0.6 and 1.5 W/kg. VE/VO2 was also higher throughout exercise, reaching significance (P less than 0.01) at 1.2, 1.5, and 1.8 W/kg. The Black subjects attained any given level of VE with a higher f (P less than 0.001) and lower VT. TI and TE were shortened proportionately so that TI/TT was not different. Differences in lung volume and the ventilatory response to exercise in these Black and Caucasian subjects suggest differences in the respiratory pressure-volume relationships or that the Black subjects may breathe higher on their pressure-volume curve.  相似文献   

8.
Prolonged breath hold (BH) represents a valid model for studying the cardiac adaptation to acute hypoxemia in humans. Cardiac magnetic resonance (CMR) allows a three-dimensional, high-resolution, noninvasive, and nonionizing anatomical and functional evaluation of the heart. The aim of the study was to assess the adaptation of the cardiovascular system to prolonged BH in air. Ten male volunteer diving athletes (age 30 +/- 6 yr) were studied during maximal BH duration with CMR. Four epochs were studied: I, rest; II and III, intermediate BH; and IV, peak BH. Oxygen saturation (So(2)), heart rate (HR), blood pressure (BP), systemic vascular resistance (VR), end-diastolic (EDV) and end-systolic volumes (ESV), stroke volume (SV), cardiac output (CO), ejection fraction (EF), maximal elastance index (EL), systolic wall thickening (SWT), and end-systolic wall stress (ESWS) of the left ventricle (LV) were measured in all four BH epochs. Average BH duration was 3.7 +/- 0.3 min. So(2) was reduced (I: 97 +/- 0.2%, range 96-98%, vs. IV: 84 +/- 2.0%, range 76-92%; P < 0.00001). BP, EDV, ESV, SV, CO, and ESWS linearly increased from epochs I to IV, whereas EF, EL, and SWT showed an opposite behavior, decreasing from resting to epoch IV (all trends are P < 0.01). During prolonged BH in air, a marked enlargement of the LV chamber occurs in healthy diving athletes. This response to acute hypoxemia allows SV,CO, and arterial pressure to be maintained despite the severe reduction in LV contractile function.  相似文献   

9.
We tested the hypothesis that heliox breathing, by reducing lung dynamic hyperinflation (DH) and dyspnea (Dys) sensation, may significantly improve exercise endurance capacity in patients with chronic obstructive pulmonary disease [n = 12, forced expiratory volume in 1 s = 1.15 (SD 0.32) liters]. Each subject underwent two cycle ergometer high-intensity constant work rate exercises to exhaustion, one on room air and one on heliox (79% He-21% O2). Minute ventilation (VE), carbon dioxide output, heart rate, inspiratory capacity (IC), Dys, and arterial partial pressure of CO2 were measured. Exercise endurance time increased significantly with heliox [9.0 (SD 4.5) vs. 4.2 (SD 2.0) min; P < 0.001]. This was associated with a significant reduction in lung DH at isotime (Iso), as reflected by the increase in IC [1.97 (SD 0.40) vs. 1.77 (SD 0.41) liters; P < 0.001] and a decrease in Dys [6 (SD 1) vs. 8 (SD 1) score; P < 0.001]. Heliox induced a state of relative hyperventilation, as reflected by the increase in VE [38.3 (SD 7.7) vs. 35.5 (SD 8.8) l/min; P < 0.01] and VE/carbon dioxide output [36.3 (SD 6.0) vs. 33.9 (SD 5.6); P < 0.01] at peak exercise and by the reduction in arterial partial pressure of CO2 at Iso [44 (SD 6) vs. 48 (SD 6) Torr; P < 0.05] and at peak exercise [46 (SD 6) vs. 48 (SD 6) Torr; P < 0.05]. The reduction in Dys at Iso correlated significantly (R = -0.75; P < 0.01) with the increase in IC induced by heliox. The increment induced by heliox in exercise endurance time correlated significantly with resting increment in resting forced expiratory in 1 s (R = 0.88; P < 0.01), increase in IC at Iso (R = 0.70; P < 0.02), and reduction in Dys at Iso (R = -0.71; P < 0.01). In chronic obstructive pulmonary disease, heliox breathing improves high-intensity exercise endurance capacity by increasing maximal ventilatory capacity and by reducing lung DH and Dys.  相似文献   

10.
Using open-magnitude scaling, we compared the relationships between breathlessness, inspiratory esophageal pressure swing (delta Pes), and ventilation in pregnancy and postpartum. Thirteen healthy women performed progressive cycle exercise tests at 33 +/- 2 wk gestation and 12 +/- 3 wk postpartum. Pulmonary function and maximal transdiaphragmatic pressure did not change. Minute ventilation (VE) was greater in the third trimester. This increase was entirely due to the increase in tidal volume (VT; 0.74 +/- 0.18 vs. 0.54 +/- 0.18 liters at rest, P less than 0.01; 1.56 +/- 0.3 vs. 1.24 +/- 0.24 liters at 48 W, P less than 0.001). delta Pes (15.3 +/- 3.0 vs. 11.9 +/- 3.5 cmH2O at 48 W, P less than 0.01) and breathlessness (1.8 +/- 1.4 vs. 1.0 +/- 0.9 at 48 W, P less than 0.05) were greater in the third trimester. However, the relationships between VT and delta Pes and between delta Pes and breathlessness were identical in the two conditions. The VT-tidal abdominal volume (Vab) and Vab-tidal gastric pressure swing (delta Pga) relationships were similar in the two conditions. In conclusion, the relationship between delta Pes and breathlessness is the same in the third trimester and postpartum. The increased VE is responsible for the breathlessness in the third trimester. Despite progressive abdominal distension by the gravid uterus, the VT-Vab and Vab-delta Pga relationships were the same in the two conditions.  相似文献   

11.
The effects of inhaled bronchodilators at rest and during exercise were studied in 15 subjects with chronic obstructive pulmonary disease. In a crossover study against placebo, albuterol caused a significant increase in expiratory flow and reduced lung hyperinflation and dyspnea at rest, but this was not associated with differences in symptoms with exercise or any relevant parameter of physical performance. Dynamic hyperinflation occurred during exercise similarly after placebo or albuterol and was associated with a reduction of forced expiratory flows. This, in turn, was correlated with the bronchoconstrictor effect of deep inhalation determined at rest. In a parallel group study, expiratory flow was increased by 3-wk treatment with salmeterol (n = 9) but not with placebo (n = 6). However, in neither group was the response to exercise different from baseline. These results suggest that in chronic obstructive pulmonary disease effective pharmacological bronchodilation at rest may not be predictive of benefits of exercise tolerance. This may be related to the occurrence of airway narrowing during exercise, particularly when a deep inhalation at rest is followed by a decrease in expiratory flow.  相似文献   

12.
Cardiac atrophy after bed rest and spaceflight.   总被引:7,自引:0,他引:7  
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.  相似文献   

13.
Flow limitation (FL) has recently been shown to be a necessary condition for the generation of forced expiratory wheezes (FEW) in normal subjects. The present study was designed to investigate whether it is also a sufficient condition. To do so we studied the effects of varying expiratory effort on generation of FEW. Six normal subjects exhaled with varying force into an orifice in line with a high-impedance suction pump. Esophageal (Pes), airway opening, and transpulmonary (Ptp) pressures were measured alongside flow rate, lung volume, and tracheal lung sounds. In each subject a certain critical degree of effort had to be attained before FEW were generated. This effort, measured as Pes at the onset of wheezes, varied among the subjects (range -11 to 45 cmH2O). Similarly, a minimal Ptp had to be reached for FEW to evolve (mean +/- SD -34 +/- 12 cmH2O, range -18 to -50 cmH2O). These critical Pes and Ptp values were significantly higher than those required for FL. It was concluded that, in addition to the requirement for FL, sufficient levels of effort and negative Ptp must exist before FEW can be generated. By analogy to experimental and theoretical results from studies on flow-induced oscillations in self-supporting collapsible tubes, it was further concluded that these pressures are required to induce flattening of the intrathoracic airways downstream from the choke point. It is this configurational change that causes air speed to become equal to or exceed the critical gas velocity needed to induce oscillations in soft-walled tubes.  相似文献   

14.
Effects of expiratory resistive loading on the sensation of dyspnea   总被引:1,自引:0,他引:1  
To determine whether an increase in expiratory motor output accentuates the sensation of dyspnea (difficulty in breathing), the following experiments were undertaken. Ten normal subjects, in a series of 2-min trials, breathed freely (level I) or maintained a target tidal volume equal to (level II) or twice the control (level III) at a breathing frequency of 15/min (similar to the control frequency) with an inspiratory load, an expiratory load, and without loads under hyperoxic normocapnia. In tests at levels II and III, end-expiratory lung volume was maintained at functional residual capacity. A linear resistance of 25 cmH2O.1(-1).s was used for both inspiratory and expiratory loading; peak mouth pressure (Pm) was measured, and the intensity of dyspnea (psi) was assessed with a visual analog scale. The sensation of dyspnea increased significantly with the magnitude of expiratory Pm during expiratory loading (level II: Pm = 9.4 +/- 1.5 (SE) cmH2O, psi = 1.26 +/- 0.35; level III: Pm = 20.3 +/- 2.8 cmH2O, psi = 2.22 +/- 0.48) and with inspiratory Pm during inspiratory loading (level II: Pm = 9.7 +/- 1.2 cmH2O, psi = 1.35 +/- 0.38; level III: Pm = 23.9 +/- 3.0 cmH2O, psi = 2.69 +/- 0.60). However, at each level of breathing, neither the intensity of dyspnea nor the magnitude of peak Pm during loading was different between inspiratory and expiratory loading. The augmentation of dyspnea during expiratory loading was not explained simply by increases in inspiratory activity. The results indicate that heightened expiratory as well as inspiratory motor output causes comparable increases in the sensation of difficulty in breathing.  相似文献   

15.
BACKGROUND: In heart failure abnormalities of pulmonary function are frequently observed particularly during exercise, which is characterized by hyperpnea, low tidal volume, early expiratory flow limitation and reduced lung compliance. Exhaled nitric oxide (NO) is increased in asthma. We evaluated whether a correlation between exhaled NO and lung mechanics exists during exercise in heart failure. METHODS: We studied 33 chronic heart failure patients and 11 healthy subjects with: a) standard pulmonary function, b) lung diffusion for carbon monoxide (DLCO) including its subcomponents, capillary volume and membrane resistance and eNO both at rest and during light exercise, c) maximal cycloergometer cardiopulmonary exercise test. RESULTS: Forced expiratory volume in 1 second (FEV1) was reduced in heart failure patients (83 +/- 17% of predicted) as was DLCO (75 +/- 18% of predicted) due to reduced membrane resistance (32.6 +/- 10.3 ml/mmHg/min vs. 39.9 +/- 6.9 in patients vs. controls, p < 0.02). eNO was lower in patients vs. controls (9.7 +/- 5.4 ppm vs. 14.4 +/- 6.4, p < 0.05) and was, during exercise, constant in patients and reduced in controls. No significant correlation was found between eNO and lung function. Vice-versa eNO changes during exercise were correlated with peak exercise oxygen consumption (r = 0.560, p < 0.001). CONCLUSIONS: The hypothesis of a link between eNO and lung function in heart failure was not proved. The correlation between eNO changes during exercise and peak VO2 might be due to hemoglobin oxygenation which binds NO to hemoglobin.  相似文献   

16.
We automated the inert gas rebreathe technique for measurement of end-expiratory lung volume (EELV) during heavy exercise. We also assessed the use of two gas tracers (He and N2) vs. a single gas tracer (He) for measurement of this lung volume and compared the two-tracer EELV to changes in the inspiratory capacity (defined with transpulmonary pressure) and shifts in the end-expiratory pressure from rest through heavy exercise. A computer program switched a pneumatic valve when flow crossed zero at end expiration and defined points in the He and N2 traces for calculation of EELV. An inherent delay of the rebreathing valve (50 ms) caused virtually no error at rest and during light exercise and an error of 74 +/- 9 ml in the EELV at peak inspiratory flow rates of 4 l/s. The measurement of EELV by the two gas tracers was closely correlated to the single-gas tracer measurement (r = 0.97) but was consistently higher (120 +/- 10 ml) than when He was used alone. This difference was accentuated with increased work rates (2-5% error in the EELV, rest to heavy exercise) and as rebreathe time increased (2-7% error in the EELV with rebreathe times of 5-20 s for all work loads combined). The double-gas tracer measurement of EELV agreed quite well with the thoracic gas volume at rest (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Recently, a vagally mediated excitatory lung reflex (ELR) causing neural hyperpnea and tachypnea was identified. Because ventilation is regulated through both inspiratory and expiratory processes, we investigated the effects of the ELR on these two processes simultaneously. In anesthetized, open-chest, and artificially ventilated rabbits, we recorded phrenic nerve activity and abdominal muscle activity to assess the breathing pattern when the ELR was evoked by directly injecting hypertonic saline (8.1%, 0.1 ml) into lung parenchyma. Activation of the ELR stimulated inspiratory activity, which was exhibited by increasing amplitude, burst rate, and duty cycle of the phrenic activity (by 22 +/- 4, 33 +/- 9, and 57 +/- 11%, respectively; n = 13; P < 0.001), but suppressed expiratory muscle activity. The expiratory muscle became silent in most cases. On average, the amplitude of expiratory muscle activity decreased by 88 +/- 5% (P < 0.002). The suppression reached the peak at 6.9 +/- 1 s and lasted for 200 s (median). Injection of H(2)O(2) into the lung parenchyma produced similar responses. By suppressing expiration, the ELR produces a shift in the workload from expiratory muscle to inspiratory muscle. Therefore, we conclude that the ELR may contribute to inspiratory muscle fatigue, not only by directly increasing the inspiratory activity but also by suppressing expiratory activity.  相似文献   

18.
Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and remodeling, lung parenchymal inflammation, and destruction resulting in expiratory airflow obstruction, hyperinflation of the lung with loss of elastic recoil, and impairment of gas exchange. Skeletal muscles in individuals with COPD generate free radicals at rest, and production increases during contractile activity. Overproduction of free radicals may result in oxidant-antioxidant imbalance in favor of oxidants. This study evaluated the levels of genetic damage in peripheral blood of patients with COPD using the cytokinesis-blocked micronucleus (CBMN) and the comet assays. The study was conducted with 25 patients with COPD and 25 controls matched for age and sex. Results of both comet and CBMN assays showed an increase in the level of DNA damage. In the group of patients with COPD, the mean frequency of binucleate cells with micronuclei was 6.72+/-3.02, and in the control group, 4.20+/-2.08 (p=0.00233). Mean comet value was 26.84+/-19.61 in patients with COPD and 7.25+/-7.57 in the control group (p=0.00004). The increased frequency of micronuclei in patients with COPD was primarily assigned to clastogenic events and DNA amplification because the frequency of nucleoplasmic bridges and buds was also increased. Oxidative stress in lung cells is a constant source of free radicals that damage genetic material of both lung and circulating cells.  相似文献   

19.
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.  相似文献   

20.
The purpose of this paper is to determine the relationship between the response to radiation and the appearance of apoptosis and micronuclei with Trp53 protein in murine tumors after irradiation. Two murine tumors, EL4, which was derived from a mouse lymphoma, and FM3A, which was derived from a mouse mammary carcinoma, were locally irradiated with 15 Gy and sections were stained with H&E and an anti-Trp53 antibody. The response to radiation was greater in EL4 tumors than in FM3A tumors. The frequency of apoptotic cells in EL4 tumors was 6.1 +/- 1.2% at time zero, reached a peak of 36.3 +/- 3. 8% at 6 h, and then decreased with time through 72 h to 2.5 +/- 1.5% after 15 Gy irradiation. In FM3A tumors, no apoptotic cells were detected at 0, 1, 3, 6 or 24 h after exposure. At 48 and 72 h, the frequency was only 3.0 +/- 0.6% and 1.3 +/- 0.3%. Apoptotic cells increased significantly at 3, 6 and 24 h after irradiation in EL4 tumors (P < 0.008) and at 48 and 72 h in FM3A tumors (P < 0.006). The frequency of Trp53-positive cells was 17.9 +/- 2.2 and 15.2 +/- 2.3% at time zero in EL4 and FM3A tumors, respectively, increased to 74.5 +/- 4.5% in EL4 cells (P = 0.001), and increased to 33.9 +/- 1. 1% in FM3A cells (P = 0.005) 1 h after irradiation. Trp53-positive micronuclei appeared in cells in both tumors from 24 to 72 h after irradiation. The frequency of Trp53-positive micronuclei was 3.8 +/- 0.5 and 13.5 +/- 1.3% at 24 h in EL4 and FM3A tumors, respectively, and gradually decreased by 72 h. After exposure to 15 Gy, Trp53-positive micronuclei increased significantly in FM3A tumors compared to EL4 tumors at both 24 and 48 h (P < 0.02). The frequency of these micronuclei increased with increasing dose in FM3A tumors, and the difference between these percentages after 3 Gy and after 5, 10 and 15 Gy was significant (P < 0.02). Many apoptotic cells were observed in the radiosensitive EL4 tumor after irradiation. Death by apoptosis may be related to an early response to radiation in these tumors. The appearance of micronuclei may be an important mechanism of cell death in FM3A tumors in which no apoptosis was induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号