首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1 or SIRPα/BIT) is an immunoglobulin (Ig) superfamily transmembrane receptor and a member of the signal regulatory protein (SIRP) family involved in cell-cell interaction. SHPS-1 binds to its ligand CD47 to relay an inhibitory signal for cellular responses, whereas SIRPβ, an activating member of the same family, does not bind to CD47 despite sharing a highly homologous ligand-binding domain with SHPS-1. To address the molecular basis for specific CD47 recognition by SHPS-1, we present the crystal structure of the ligand-binding domain of murine SHPS-1 (mSHPS-1). Folding topology revealed that mSHPS-1 adopts an I2-set Ig fold, but its overall structure resembles IgV domains of antigen receptors, although it has an extended loop structure (C′E loop), which forms a dimer interface in the crystal. Site-directed mutagenesis studies of mSHPS-1 identified critical residues for CD47 binding including sites in the C′E loop and regions corresponding to complementarity-determining regions of antigen receptors. The structural and functional features of mSHPS-1 are consistent with the human SHPS-1 structure except that human SHPS-1 has an additional β-strand D. These results suggest that the variable complementarity-determining region-like loop structures in the binding surface of SHPS-1 are generally required for ligand recognition in a manner similar to that of antigen receptors, which may explain the diverse ligand-binding specificities of SIRP family receptors.  相似文献   

2.
CD47 is a widely distributed cell-surface protein that acts a marker of self through interactions of myeloid and neural cells. We describe the high-resolution X-ray crystallographic structures of the immunoglobulin superfamily domain of CD47 alone and in complex with the N-terminal ligand-binding domain of signal regulatory protein alpha (SIRPalpha). The unusual and convoluted interacting face of CD47, comprising the N terminus and loops at the end of the domain, intercalates with the corresponding regions in SIRPalpha. We have also determined structures of the N-terminal domains of SIRPbeta, SIRPbeta(2), and SIRPgamma; proteins that are closely related to SIRPalpha but bind CD47 with negligible or reduced affinity. These results explain the specificity of CD47 for the SIRP family of paired receptors in atomic detail. Analysis of SIRPalpha polymorphisms suggests that these, as well as the activating SIRPs, may have evolved to counteract pathogen binding to the inhibitory SIRPalpha receptor.  相似文献   

3.
Signal regulatory protein (SIRP) α, a transmembrane protein belonging to the immunoglobulin superfamily, is a receptor for CD47. The interaction between SIRPα and CD47 plays an important role in regulating the phagocytosis of leukemia cells and leukemia stem cells (LSCs) by macrophages. Blocking antibodies against CD47 have been shown to promote phagocytosis of LSCs by macrophages. Here, we consider an alternative way to interrupt the interaction between CD47 and SIRPα. We expressed the extracellular domains of the human SIRPα (hSIRP(ext)) and the human CD47 (hCD47(ext)) in Escherichia coli as Trx fusion proteins, and purified them by using affinity chromatography. We show that the purified fusion protein Trx-SIRP(ext) could interact in vitro with Trx-hCD47(ext). Moreover, Trx-SIRP(ext) could effectively bind to Jurkat T-ALL cells, which expressed CD47 at a high level. CD47(ext), on the other hand, bound to human macrophages. In vitro phagocytosis assay showed that these fusion proteins could enhance the phagocytosis of Jurkat cells by macrophage, with Trx-hSIRP(ext) showed a higher efficiency than Trx-CD47(ext). These results indicated that the soluble Trx-hSIRP(ext) and Trx-CD47(ext) polypeptides could be alternative molecules to interrupt CD47-SIRPα interaction between leukemia cells and macrophages, and might be potentially useful for the targeted therapy of leukemia.  相似文献   

4.
Signal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs. In the present work, we examined the molecular basis of Sp-D binding to SIRPα using domain-deleted mutant proteins. We report that Sp-D binds to the membrane-proximal Ig domain (D3) of SIRPα in a calcium- and carbohydrate-dependent manner. Mutation of predicted N-glycosylation sites on SIRPα indicates that Sp-D binding is dependent on interactions with specific N-glycosylated residues on the membrane-proximal D3 domain of SIRPα. Given the remarkable sequence similarity of SIRPα to SIRPβ and the lack of known ligands for the latter, we examined Sp-D binding to SIRPβ. Here, we report specific binding of Sp-D to the membrane-proximal D3 domain of SIRPβ. Further studies confirmed that Sp-D binds to SIRPα expressed on human neutrophils and differentiated neutrophil-like cells. Because the other known ligand of SIRPα, CD47, binds to the membrane-distal domain D1, these findings indicate that multiple, distinct, functional ligand binding sites are present on SIRPα that may afford differential regulation of receptor function.  相似文献   

5.
The molecular basis for formation of lymphoid follicle and its homeostasis in the secondary lymphoid organs remains unclear. Signal regulatory protein α (SIRPα), an Ig superfamily protein that is predominantly expressed in dendritic cells or macrophages, mediates cell-cell signaling by interacting with CD47, another Ig superfamily protein. In this study, we show that the size of the T cell zone as well as the number of CD4(+) T cells were markedly reduced in the spleen of mice bearing a mutant (MT) SIRPα that lacks the cytoplasmic region compared with those of wild-type mice. In addition, the expression of CCL19 and CCL21, as well as of IL-7, which are thought to be important for development or homeostasis of the T cell zone, was markedly decreased in the spleen of SIRPα MT mice. By the use of bone marrow chimera, we found that hematopoietic SIRPα is important for development of the T cell zone as well as the expression of CCL19 and CCL21 in the spleen. The expression of lymphotoxin and its receptor, lymphotoxin β receptor, as well as the in vivo response to lymphotoxin β receptor stimulation were also decreased in the spleen of SIRPα MT mice. CD47-deficient mice also manifested phenotypes similar to SIRPα MT mice. These data suggest that SIRPα as well as its ligand CD47 are thus essential for steady-state homeostasis of T cells in the spleen.  相似文献   

6.
7.
Recent studies have demonstrated that CD47 plays an important role in regulating human neutrophil (PMN) chemotaxis. Two ligands for CD47, thrombospondin and SIRPalpha, have been described. However, it is not known if SIRP-CD47 interactions play a role in regulating PMN migration. In this study, we show that SIRPalpha1 directly binds to the immunoglobulin variable domain loop of purified human CD47 and that such SIRP-CD47 interactions regulate PMN transmigration. Specifically, PMN migration across both human epithelial monolayers and collagen-coated filters was partially inhibited by anti-SIRP monoclonal antibodies. Similar kinetics of inhibition were observed for PMN transmigration in the presence of soluble, recombinant CD47 consisting of the SIRP-binding loop. In contrast, anti-CD47 monoclonal antibodies inhibited PMN transmigration by markedly different kinetics. Results of signal transduction experiments suggested differential regulation of PMN migration by SIRP versus CD47 by phosphatidylinositol 3-kinase and tyrosine kinases, respectively. Immunoprecipitation followed by Western blotting after SDS-PAGE under nonreducing conditions suggested that several SIRP protein species may be present in PMN. Stimulation of PMN with fMLP resulted in increased surface expression of these SIRP proteins, consistent with the existence of intracellular pools. Taken together, these results demonstrate that PMN migration is regulated by CD47 through SIRPalpha-dependent and SIRPalpha-independent mechanisms.  相似文献   

8.
The extracellular region of CD6 consists of three scavenger receptor cysteine-rich (SRCR) domains and binds activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily (IgSF). Residues important for the CD6-ALCAM interaction have previously been identified by mutagenesis. A total of 22 CD6 residues were classified according to their importance for anti-CD6 monoclonal antibody (mAb) and/or ALCAM binding. The three-dimensional structure of the SRCR domain of Mac-2 binding protein has recently been determined, providing a structural prototype for the SRCR protein superfamily. This has made a thorough three-dimensional analysis of CD6 mutagenesis and mAb binding experiments possible. Mutation of buried residues compromised both mAb and ALCAM binding, consistent with the presence of structural perturbations. However, several residues whose mutation affected both mAb and ALCAM binding or, alternatively, only ligand binding were found to map to the surface in the same region of the domain. This suggests that the CD6 ligand binding site and epitopes of tested mAbs overlap and provides an explanation for the finding that these mAbs effectively block ALCAM binding. An approximate molecular model of CD6 was used to delineate the ALCAM binding site.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089490050263Abbreviations ALCAM activated leukocyte cell adhesion molecule - CD6D3 third (membrane-proxi-mal) extracellular domain of CD6 - IgSF immunoglobulin superfamily - mAb monoclonal antibody - M2BP Mac-2 binding protein - SRCR scavenger receptor cysteine-rich domain - SRCRSF scavenger receptor cysteine-rich protein superfamily  相似文献   

9.
Signal-regulatory protein α (SIRPα) is a myeloid membrane receptor that interacts with the membrane protein CD47, a marker of self. We have solved the structure of the complete extracellular portion of SIRPα, comprising three immunoglobulin superfamily domains, by x-ray crystallography to 2.5 Å resolution. These data, together with previous data on the N-terminal domain and its ligand CD47 (possessing a single immunoglobulin superfamily domain), show that the CD47-SIRPα interaction will span a distance of around 14 nm between interacting cells, comparable with that of an immunological synapse. The N-terminal (V-set) domain mediates binding to CD47, and the two others are found to be constant (C1-set) domains. C1-set domains are restricted to proteins involved in vertebrate antigen recognition: T cell antigen receptors, immunoglobulins, major histocompatibility complex antigens, tapasin, and β2-microglobulin. The domains of SIRPα (domains 2 and 3) are structurally more similar to C1-set domains than any cell surface protein not involved in antigen recognition. This strengthens the suggestion from sequence analysis that SIRP is evolutionarily closely related to antigen recognition proteins.Signal-regulatory protein α (SIRPα)4 is a membrane receptor present on myeloid cells and neurons that interacts with the widely distributed cell surface protein CD47 (reviewed in Refs. 1 and 2). Absence of CD47 leads to uptake of cells via macrophages, indicating that CD47 acts as a marker of self (3). SIRPα gives inhibitory signals through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2 (4). Binding of the N-terminal immunoglobulin superfamily (IgSF) V-set domain of SIRPα (SIRPα d1) to the single IgSF domain of CD47 is mediated by the loops of the SIRPα IgSF domain, analogous to the interactions mediated by antigen receptors, albeit involving only a single domain (5, 6). This type of binding distinguishes the CD47-SIRPα interaction from that of many interactions at the cell surface involving IgSF domains such as CD2-CD58, where the face of the IgSF domain is involved (7). SIRPα domains 2 and 3 (d2 and d3) show amino acid sequence similarity to IgSF C1-set domains (8). Since IgSF C1-set domains have only been confirmed in vertebrate antigen receptors and associated proteins (Ig light and heavy chains, T cell receptor chains, MHC class I and II and related proteins, β2-microglobulin, and very recently tapasin (9)) of the vertebrate adaptive immune system, it was suggested that SIRPα might have evolved from a precursor of the antigen receptors (8).We describe here the crystal structure of the full three-domain extracellular region of SIRPα, revealing that the topology of the CD47-SIRPα interaction is compatible with productive engagement occurring when cells come together in synapse-like contacts. We show that the two membrane-proximal IgSF domains are particularly close in structure to C1-set IgSF domains. This, together with the presence of an IgSF V-set domain mediating ligand recognition, suggests that SIRPα is related to a key precursor in the evolution of vertebrate antigen receptors.  相似文献   

10.
Five CD28-like proteins exert positive or negative effects on immune cells. Only four of these five receptors interact with members of the B7 family. The exception is BTLA (B and T lymphocyte attenuator), which instead interacts with the tumor necrosis factor receptor superfamily member HVEM (herpes virus entry mediator). To better understand this interaction, we determined the 2.8-A crystal structure of the BTLA-HVEM complex. This structure shows that BTLA binds the N-terminal cysteine-rich domain of HVEM and employs a unique binding surface compared with other CD28-like receptors. Moreover, the structure shows that BTLA recognizes the same surface on HVEM as gD (herpes virus glycoprotein D) and utilizes a similar binding motif. Light scattering analysis demonstrates that the extracellular domain of BTLA is monomeric and that BTLA and HVEM form a 1:1 complex. Alanine-scanning mutagenesis of HVEM was used to further define critical binding residues. Finally, BTLA adopts an immunoglobulin I-set fold. Despite structural similarities to other CD28-like members, BTLA represents a unique co-receptor.  相似文献   

11.
SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.  相似文献   

12.
The Saccharomyces cerevisiae adhesion protein alpha-agglutinin (Ag alpha 1p) is expressed by alpha cells and binds to the complementary a-agglutinin expressed by a cells. The N-terminal half of alpha-agglutinin is sufficient for ligand binding and has been proposed to contain an immunoglobulin (Ig) fold domain. Based on a structural homology model for this domain and a previously identified critical residue (His292), we made Ag alpha 1p mutations in three discontinuous patches of the domain that are predicted to be in close proximity to His292 in the model. Residues in each of the three patches were identified that are important for activity and therefore define a putative ligand binding site, whereas mutations in distant loops had no effect on activity. This putative binding site is on a different surface of the Ig fold than the defined binding sites of immunoglobulins and other members of the Ig superfamily. Comparison of protein interaction sites by structural and mutational analysis has indicated that the area of surface contact is larger than the functional binding site identified by mutagenesis. The putative alpha-agglutinin binding site is therefore likely to identify residues that contribute to the functional binding site within a larger area that contacts a-agglutinin.  相似文献   

13.
Batori V  Koide A  Koide S 《Protein engineering》2002,15(12):1015-1020
The tenth fibronectin type III domain of human fibronectin (FNfn10) is a small, monomeric beta-sandwich protein, similar to the immunoglobulins. We have developed small antibody mimics, 'monobodies', using FNfn10 as a scaffold. We initially altered two loops of FNfn10 that are structurally equivalent to two of the hypervariable loops of the immunoglobulin domain. In order to assess the possibility of utilizing other loops in FNfn10 for target binding, we determined the effects of the elongation of each loop on the conformational stability of FNfn10. We found that all six loops of FNfn10 allowed the introduction of four glycine residues while retaining the global fold. Insertions in the AB and FG loops exhibited very small degrees of destabilization, comparable to or less than predicted entropic penalties due to the elongation, suggesting the absence of stabilizing interactions in these loops in wild-type FNfn10. Insertions in the BC, CD and DE loops, respectively, resulted in modest destabilization. In contrast, the EF loop elongation was highly destabilizing, consistent with previous studies showing the presence of stabilizing interactions in this loop. These results suggest that all loops, except for the EF loop, can be used for engineering a binding site, thus demonstrating excellent properties of the monobody scaffold.  相似文献   

14.
The macrophage fusion receptor (MFR), also called P84/BIT/SIRPalpha/SHPS-1, is a transmembrane glycoprotein that belongs to the superfamily of immunoglobulins. Previously, we showed that MFR expression is highly induced at the onset of fusion in macrophages, and that MFR appears to play a role in macrophage-macrophage adhesion/fusion leading to multinucleation. The recent finding that IAP/CD47 acts as a ligand for MFR led us to hypothesize that it interacts with CD47 at the onset of cell-cell fusion. CD47 is a transmembrane glycoprotein, which, like MFR, belongs to the superfamily of immunoglobulins. We show that macrophages express the hemopoietic form of CD47, the expression of which is induced at the onset of fusion, but to a lower level than MFR. A glutathione S-transferase CD47 fusion protein engineered to contain the extracellular domain of CD47, binds macrophages, associates with MFR, and prevents multinucleation. CD47 and MFR associate via their amino-terminal immunoglobulin variable domain. Of the nine monoclonal antibodies raised against the extracellular domain of CD47, three block fusion, as well as MFR-CD47 interaction, whereas the others have no effect. Together, these data suggest that CD47 is involved in macrophage multinucleation by virtue of interacting with MFR during adhesion/fusion.  相似文献   

15.
Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregulation is closely associated with degranulation. Cross-linking SIRPα/CD172a on the surface of wild-type eosinophils significantly inhibited the release of eosinophil peroxidase induced by the calcium ionophore A23187, whereas this cross-linking effect was not observed in eosinophils isolated from mice expressing a mutated SIRPα/CD172a that lacks most of its cytoplasmic domain (SIRPα Cyto(-/-)). The SIRPα Cyto(-/-) eosinophils showed reduced viability, increased CD63 expression, and increased eosinophil peroxidase release with or without A23187 stimulation in vitro. In addition, SIRPα Cyto(-/-) mice showed increased frequencies of Annexin V-binding eosinophils and free MBP(+)CD63(+) extracellular granules, as well as increased tissue remodeling in the small intestine under steady-state conditions. Mice deficient in CD47, which is a ligand for SIRPα/CD172a, recapitulated these phenomena. Moreover, during Th2-biased inflammation, increased eosinophil cell death and degranulation were obvious in a number of tissues, including the small intestine, in the SIRPα Cyto(-/-) mice compared with wild-type mice. Collectively, our results indicated that SIRPα/CD172a regulates eosinophil homeostasis, probably by interacting with CD47, with substantial effects on eosinophil survival. Thus, SIRPα/CD172a is a potential therapeutic target for eosinophil-associated diseases.  相似文献   

16.
Formation of chemical synapses requires exchange of organizing signals between the synaptic partners. Using synaptic vesicle aggregation in cultured neurons as a marker of presynaptic differentiation, we purified candidate presynaptic organizers from mouse brain. A major bioactive species was the extracellular domain of signal regulatory protein alpha (SIRP-alpha), a transmembrane immunoglobulin superfamily member concentrated at synapses. The extracellular domain of SIRP-alpha is cleaved and shed in a developmentally regulated manner. The presynaptic organizing activity of SIRP-alpha is mediated in part by CD47. SIRP-alpha homologues, SIRP-beta and -gamma also have synaptic vesicle clustering activity. The effects of SIRP-alpha are distinct from those of another presynaptic organizer, FGF22: the two proteins induced vesicle clusters of different sizes, differed in their ability to promote neurite branching, and acted through different receptors and signaling pathways. SIRP family proteins may act together with other organizing molecules to pattern synapses.  相似文献   

17.
Scavenger receptor cysteine-rich (SRCR) domains are ancient protein modules widely found among cell surface and secreted proteins of the innate and adaptive immune system, where they mediate ligand binding. We have solved the crystal structure at 2.2 A of resolution of the SRCR CD5 domain III, a human lymphocyte receptor involved in the modulation of antigen specific receptor-mediated T cell activation and differentiation signals. The first structure of a member of a group B SRCR domain reveals the fold of this ancient protein module into a central core formed by two antiparallel beta-sheets and one alpha-helix, illustrating the conserved core at the protein level of genes coding for group A and B members of the SRCR superfamily. The novel SRCR group B structure permits the interpretation of site-directed mutagenesis data on the binding of activated leukocyte cell adhesion molecule (ALCAM/CD166) binding to CD6, a closely related lymphocyte receptor homologue to CD5.  相似文献   

18.
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide‐bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin‐like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig‐like domain of the human T cell co‐receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein‐protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino‐acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1‐p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1‐p53(FG)‐loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1‐p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.  相似文献   

19.
Mammalian immunoregulatory families of genes encoding activating and inhibitory Ig-like receptor pairs have been located on distinct chromosomes. In chicken, a single Ig-like receptor family with many members had been described so far. By looking at sequence similarity and synteny conservations in the chicken genome, the signal-regulatory protein (SIRP), triggering receptor expressed on myeloid cells (TREM), and CMRF35/CD300L Ig-like gene families were identified on chromosomes 20, 26, and 3, respectively. Further analysis of the three corresponding genomic regions and partial bacterial artificial chromosome sequencing were used to identify more members and to realign several contigs. All putative genomic sequences were monitored by investigating existing expressed sequence tag and cloning cDNA. This approach yielded a single pair of activating and inhibitory SIRP, two inhibitory, and one activating TREM as well as one inhibitory CMRF35/CD300L with a potentially soluble variant and an additional member lacking categorizing motifs. The CMRF35/CD300L and TREM receptors were composed of one or two V-set Ig domains, whereas in SIRP, either a single Ig V domain was present or a combination of a V and C1 domains. Like in many Ig superfamily members, separate exons encode individual Ig domains. However, in two CMRF35/CD300L genes, the signal peptide and the distal Ig domain were encoded by a single exon. In conclusion, the mammalian diversity of immunoregulatory molecules is present the chicken suggesting an important role for TREM, SIRP, and CMRF35/CD300L in a functionally conserved network.  相似文献   

20.
CD6-ligand interactions have been implicated in the regulation of T-cell adhesion and activation. CD6 is a member of the scavenger receptor family, whereas its human ligand (ALCAM) belongs to the immunoglobulin superfamily. The extracellular region of ALCAM includes five immunoglobulin-like domains. As a fusion protein, the N-terminal extracellular domain of ALCAM (ALCAMD1) binds specifically to CD6. We report the construction, assessment, and analysis of a molecular model of ALCAMD1. The model defines the CDR-analogous loops, the location of N-linked glycosylation sites, and residues that form the beta-sheet faces of the immunoglobulin-like domain. Predicted structural characteristics of the A'GFCC'C" face of the model are consistent with the presence of monomeric and dimeric forms of ALCAMD1, which has implications for the receptor-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号