首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA), a structural Glu analog, to rat striatal membranes was studied. In the absence of potassium thiocyanate and Cl-/Ca2+, saturation-curve analysis of [3H]AMPA binding suggested that a single class of noninteracting binding sites with a KD value of 340 +/- 27 nM was involved, although AMPA inhibition of [3H]AMPA binding set at a concentration of 100 nM suggested, in contrast, the presence of multiple populations of striatal binding sites. Several other excitatory amino acid receptor agonists and antagonists were tested, and the most potent and selective quisqualic acid (QA) receptor agonists (QA, L-Glu, and AMPA) were found to represent the most potent inhibitors of [3H]AMPA binding. N-Methyl-D-aspartate receptor agonists and antagonists were ineffective as displacers of the [3H]AMPA binding. Lesions of intrastriatal neurons (using kainic acid local injections) and of corticostriatal afferent fibers led 2-3 weeks later to large decreases (63 and 30%, respectively) in striatal [3H]AMPA binding, whereas selective lesion of the nigrostriatal dopaminergic pathway (using nigral injection of 6-hydroxy-dopamine) was without any influence. Taken together, these results suggest that [3H]AMPA binding is primarily associated with postsynaptic intrastriatal neurons. Some [3H]AMPA binding sites may also be located presynaptically on corticostriatal nerve endings. So, in addition to the possibility that [3H]AMPA binding sites may be involved in corticostriatal synaptic transmission, it is interesting that these putative QA-preferring excitatory amino acid receptor sites may also play some role in autoregulatory processes underlying this excitatory synaptic transmission.  相似文献   

2.
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.  相似文献   

3.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding sites were solubilized from rat brain membranes using 1% Triton X-100 in 0.5 M potassium phosphate buffer containing 20% glycerol. The solubilized binding sites were stable, permitting biochemical and pharmacological characterization as well as partial purification. Pharmacological and binding analyses indicated that the solubilized binding sites were similar to the membrane-bound sites. Both the solubilized and the membrane-bound preparations contained high- and low-affinity AMPA binding sites in the presence of potassium thiocyanate. A similar rank order for inhibition of [3H]AMPA binding by several excitatory amino acid analogs was obtained for the soluble and membrane-bound preparations. [3H]AMPA binding to both soluble and membrane-bound preparations was increased in the presence of potassium thiocyanate. The solubilized AMPA binding sites migrated as a single peak with gel filtration chromatography, with an Mr of 425,000. Beginning with the solubilized preparation, AMPA binding sites were purified 54-fold with ion-exchange chromatography and gel filtration. The characterization and purification of these soluble binding sites is potentially useful for the molecular characterization of this putative excitatory amino acid receptor subtype.  相似文献   

4.
Abstract: Brainstem nuclei serve a diverse array of functions in many of which ionotropic glutamate receptors are known to be involved. However, little detailed information is available on the expression of different glutamate receptor subunits in specific nuclei. We used RT‐PCR in mice to analyze the glutamate receptor subunit composition of the pre‐Bötzinger complex, the hypoglossal nucleus, the nucleus of the solitary tract, and the inferior olive. Analyzing 15 receptor subunits and five variants, we found all four α‐amino‐3‐hydroxy‐5‐methyl‐4‐propionic acid (AMPA) and six NMDA receptor (NR) subunits as well as three of five kainate (KA) receptors (GluR5, GluR6, and KA1) to be expressed in all nuclei. However, some distinct differences were observed: The inferior olive preferentially expresses flop variants of AMPA receptors, GluR7 is more abundant in the pre‐Bötzinger complex than in the other nuclei, and NR2C is most prominent in the nucleus of the solitary tract. In single hypoglossal motoneurons and interneurons of the pre‐Bötzinger complex investigation of GluR2 editing revealed strong expression of the GluR2‐R editing variant, suggesting low Ca2+ permeability of AMPA receptors. Thus, Ca2+ ‐permeable AMPA receptors are unlikely to be the cause for the reported selective vulnerability of hypoglossal motoneurons during excitotoxic events.  相似文献   

5.
Amino acid release studies were performed by an HPLC procedure using differentiated rat cerebellar granule cell cultures. Kainic acid (KA; 50 microM) caused an increase (about threefold) in the release of endogenous glutamate and a lesser, but statistically significant, increase in the release of glutamine, glycine, threonine, taurine, and alanine. Quisqualic acid (QA) and, to a lesser degree, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (both 50 microM) enhanced the release of the following amino acids in the order glutamate greater than aspartate greater than or equal to taurine, whereas the release of other amino acids was either unaffected or affected in a statistically nonsignificant way. The release of glutamate induced by KA was partially (43%) Ca2+ dependent. The other release-inducing effects of KA and QA were not Ca2+ dependent. In all cases, the evoked release could be prevented by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-2,3-hydroxy-7-nitroquinoxaline, and thus appeared to be receptor mediated. NMDA (5 and 50 microM) had no release-inducing activity. The KA-, QA-, and AMPA-evoked release of newly synthesized [3H]glutamate and [3H]aspartate (formed in the cells exposed to [3H]glutamine) was very similar to the evoked release of endogenous glutamate and aspartate. On the other hand, the release of preloaded D-[3H]aspartate (purified by HPLC in the various fractions analyzed, before radioactivity determination) induced by 50 microM KA was twice as high as that of endogenous glutamate. In the case of high [K+] depolarization, in contrast, the release of preloaded D-[3H]aspartate was approximately 30% lower than that of endogenous glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: Excitatory amino acids, acting at both N methyl- d -aspartate (NMDA) and non-NMDA receptors, release the inhibitory neuromodulator adenosine from superfused rat cortical slices. This study was initiated to investigate the possible purinergic sources and mechanisms of release for the adenosine release evoked by NMDA and non-NMDA receptor activation. Inhibition of the bidirectional nucleo-side transporter with dipyridamole greatly enhanced adenosine release evoked by glutamate, NMDA, kainate, and ( RS -α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Inhibition of ecto -5'-nucleotidase with α,β-methylene ADP and GMP had no effect on either kainateor AMPA-evoked adenosine release, but it decreased glutamate- and NMDA-evoked adenosine release by 23 and 68%, respectively. A similar inhibition of NMDA-evoked adenosine release was observed with α,β-methylene ADP alone, indicating that the inhibitory effect was not due to the reported competitive inhibition of NMDA receptors by GMP. Finally, NMDA-evoked adenosine release, but not kainate- or AMPA-evoked release, was Ca2+ dependent. These results indicate that activation of non-NMDA receptors releases adenosine per se in a Ca2+-independent manner. In contrast, NMDA receptor activation releases primarily a nucleotide that is subsequently converted extracellularly to adenosine; in this case, release is Ca2+ dependent. Although neither NMDA- nor non-NMDA-evoked adenosine release occurs via the nucleoside transporter, this transporter does appear to be a major route for removal of adenosine from the extracellular space.  相似文献   

7.
Using primary cultured cortical neurons from embryonic rat brains, we elucidated an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid (KA) receptor-mediated neuroprotective mechanism through actions of nerve growth factor (NGF) in developing neurons. Neurotoxicity of KA in early days in vitro neurons was quite low compared with the mature neurons. However, pretreatment with anti-NGF antibody or TrkA inhibitor AG-879 profoundly raised KA toxicity. Furthermore, KA stimulation resulted in an increase of TrkA expression and phosphorylation, which was blocked not only by the AMPA/KA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and AG-879, but also by the phospholipase C inhibitor U73122 and the intracellular calcium chelator BAPTA. A study of polyphosphoinositide turnover showed that KA-stimulated phospholipase C (PLC) activity was directly triggered by the AMPA/KA receptor activity, but not by the activity of TrkA or other excitatory amino acid receptor subtypes. Sources of KA-increased intracellular calcium levels were contributed by both extracellular calcium influx and intracellular calcium release and were partially sensitive to guanosine 5'-O-(2-thiodiphosphate). These results indicate that in developing cortical neurons, activation of AMPA/KA receptors by KA may induce expression, followed by activation of TrkA via PLC signaling and intracellular calcium elevation and hence increase reception of NGF on KA-challenged neurons. A G protein-coupled AMPA/KA receptor may be involved in these metabotropic events for neuronal protection.  相似文献   

8.
Binding of [3H](R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) to quisqualate receptors in the presence of SCN- ions produced curvilinear Scatchard plots. Kinetic investigations of [3H]AMPA binding showed that the curvilinearity cannot be explained by assuming binding to two separate binding sites or by considering it due to cooperative interaction. A more likely explanation is that the quisqualate receptors exist in two states, one with high and one with low affinity for [3H]AMPA. Chaotropic ions change the relaxation constant between the two states.  相似文献   

9.
Abstract: Transient forebrain or global ischemia in rats induces selective and delayed damage of hippocampal CA1 neurons. In a previous sludy, we have shown that expression of GIuR2, the kainate/a-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that governs Ca' permeability, is preferentially reduced in CA1 at a time point proceeding neuronal degeneration. Postischemic administration of the selective AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), protects CAI neurons against delayed death. In this study we examined the effects of NBQX (at a neuroprotective dose) and of MK-801 (a selective NMDA receptor anltagonist, not protective in this model) on kainate/AMPA receptor gene expression changes after global ischemia. We also examined the effects of transient forebrain ischemia on expression of the NMDA receptor subunit NMDARI. In ischemic rats treated with saline, GIuR2 and (31uR3 mRNAs were markedly reduced in CAI but were unchanged in CA3 or dentate gyrus. GluRl and NMDAR1 mRNAs were not significantly changed in any region examined. Administration of NBQX or MK-801 did not alter the ischemia-induced changes in kainate/AMPA receptor gene expression. These findings suggest that NBQX affords neuroprotection by a direct blockade of kainate/AMPA receptors, rather than by a modificatian of GIuR2 expression changes  相似文献   

10.
Abstract: Cultured cerebellar granule cells become vulnerable to excitatory amino acids, especially to NMDA and kainate, by 9 days in vitro. In the same time, the sensitivity of cells to (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), in terms of AMPA-induced toxicity or 45Ca2+ uptake, was very low. The low AMPA responsiveness was due to receptor desensitization, because agents known to block desensitization, cyclothiazide and the lectins concanavalin A and wheat germ agglutinin, rendered granule cells vulnerable to AMPA and produced a pronounced stimulation of 45Ca2+ accumulation. 45Ca2+ influx was induced specifically by AMPA-receptor stimulation, because it was blocked virtually completely by 2,3-dihydroxy-6-nitro-7-sulfamoylbenzoquinoxaline (NBQX) and the benzodiazepine GYKI 52466 (selective non-NMDA receptor antagonists). Nevertheless, indirect routes activated by cellular responses to AMPA-receptor stimulation contributed significantly to the overall 45Ca2+ influx. These included Ca2+ uptake through NMDA-receptor channels, voltage-sensitive Ca2+ channels, and via Na+/Ca2+ exchange. However, nearly one-fifth of the total 45Ca2+ influx remained unaccounted for and this estimate was similar to 45Ca2+ influx observed under Na+-free conditions. This observation suggested that a significant proportion of the Ca2+ flux passes through the AMPA-receptor channel proper, a view supported by Co2+ uptake into nearly all granule cells on exposure to AMPA in the presence of cyclothiazide. Results are discussed in light of the reported AMPA receptor-subunit composition of cerebellar granule cells in vitro.  相似文献   

11.
Developing neuronal populations undergo significant attrition by natural cell death. Dopaminergic neurons in the substantia nigra pars compacta undergo apoptosis during synaptogenesis. Following this time window, destruction of the anatomic target of dopaminergic neurons results in dopaminergic cell death but the morphology is no longer apoptotic. We describe ultrastructural changes that appear unique to dying embryonic dopaminergic neurons. In primary cultures of mesencephalon, death of dopaminergic neurons is triggered by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and differs ultrastructurally from both neuronal apoptosis or typical excitotoxicity. AMPA causes morphological changes selectively in dopaminergic neurons, without affecting other neurons in the same culture dishes. Two hours after the onset of treatment swelling of Golgi complexes is apparent. At 3 h, dopaminergic neurons display loss of membrane asymmetry (coinciding with commitment to die), as well as nuclear membrane invagination, irregular aggregation of chromatin, and mitochondrial swelling. Nuclear changes continue to worsen until loss of cytoplasmic structures and cell death begins to occur after 12 h. These changes are different from those described in neurons undergoing either apoptosis or excitotoxic death, but are similar to ultrastructural changes observed in spontaneous death of dopaminergic neurons in the natural mutant weaver mouse.  相似文献   

12.
Abstract: The present investigation examined the effect of in vivo antagonism of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor by 2,3-dihydro-6-nitro-7-sulfamoylbenzo( f )quinoxaline (NBQX) on local cerebral glucose utilization (LCGU) using the quantitative autoradiographic Pdeoxy[14C]-glucose method in conscious rats. NBQX, at doses of 10, 30, and 60 mg/kg i.p. or three injections of 30 mg/kg i.p., did not increase LCGU in limbic areas such as the primary olfactory cortex. olfactory tubercle, hippocampus, dentate gyrus, posterior cingulate cortex, mamillary body, caudate nucleus, anterior thalamic nucleus, and nucleus accumbens. NBQX, at doses of 260 mg/kg i.p., decreased LCGU in these brain areas. These data demonstrate that in vivo antagonism of the AMPA receptors by NBQX produces a pattern of alterations in metabolic activity, different from that produced by noncompetitive antagonists of the N-methyl-D-aSpartate (NMDA) receptor, e.g., phencyclidine and MK-801. Combined with a lack of "phencyclidine-like" behavior produced by NBQX. these data suggest that antagonism of the AMPA receptor represents a novel mechanism to block excitatory amino acids in the CNS, which may be devoid of unwanted behavioral side effects associated with noncompetitive antagonism of the NMDA receptor.  相似文献   

13.
14.
Abstract: The effects of glutamatergic excitotoxins on intracellular Cl? were investigated in the CA1 pyramidal cell layer of the hippocampal slice. Hippocampal slices from rats (14–19 days old) were loaded with 6-methoxy-N-ethylquinolinium chloride (MEQ), a Cl?-sensitive fluorescent probe with a fluorescence intensity that correlates inversely with intracellular [Cl?]. Slices were exposed for at least 10 min at 26–28°C to N-methyl-d -aspartate (NMDA; 100 µM) or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA; 50 µM). A UV laser scanning confocal microscope was used to measure changes in MEQ fluorescence within area CA1 pyramidal cell soma. Both glutamate receptor agonists produced a rapid decrease in MEQ fluorescence that persisted after washout following a 10-min exposure. The effects of NMDA and AMPA were prevented by the competitive antagonists 2-amino-5-phosphonopentanoic acid and 6,7-dinitroquinoxaline-2,3-dione, respectively. Neither tetrodotoxin nor picrotoxin prevented the effect of NMDA or AMPA, indicating the lack of involvement of presynaptic mechanisms. The effects of NMDA and AMPA on MEQ fluorescence were dependent on the levels of extracellular Cl?, but only NMDA responses were dependent on the levels of extracellular Na+. Removal of Ca2+ from the superfusion medium did not alter the effects of NMDA or AMPA on MEQ fluorescence. In addition, neither the Ca2+ ionophore ionomycin nor the L-type voltage-gated Ca2+ channel agonist (Bay K 8644) decreased MEQ fluorescence. The effects of NMDA and AMPA on cell (somal) volume were also assessed with the fluorescent probe calcein acetoxymethyl ester. Both NMDA and AMPA decreased calcein fluorescence (indicating an increased cell volume), but this was preceded by the decrease in MEQ fluorescence (equivalent to an intracellular accumulation of ~20 mM Cl?). Thus, excitotoxins may cause Cl? influx via an anion channel other than the GABAA receptor and/or reduce Cl? efflux mechanisms to produce cell swelling. Such anionic shifts may promote neuronal excitability and cell death following an excitotoxic insult to the hippocampal slice.  相似文献   

15.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

16.
Abstract: The binding of [3H]NS 257 {1,2,3,6,7,8-hexahydro-3-(hydroxyimino)- N,N -[3H]dimethyl-7-methyl-2-oxobenzo[2,1- b :3,4- c '] dipyrrole-5-sulfonamide} to rat cortical membranes was characterized in the absence and presence of thiocyanate. Specific [3H]NS 257 binding was saturable and reversible, and the stimulating effect of thiocyanate on binding was optimal at 100 m M . In the presence of thiocyanate [3H]NS 257 bound to a single population of binding sites with an affinity of 225 ± 8 n M and a binding site density of 0.61 ± 0.04 pmol/mg of original tissue. Thiocyanate increased the affinity of the binding site labeled by [3H]NS 257 for both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and l -glutamate by a factor of 20 and 5, respectively. However, the affinity of the agonist domoate and the antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo( f )-quinoxaline (NBQX) was decreased in the presence of thiocyanate. Apparently, the affinities of antagonists as well as agonists for the AMPA receptor can be either increased or decreased by thiocyanate. The rank order of potency of the putative agonists quisqualate > AMPA > l -glutamate > domoate > kainate and of the antagonists NBQX > CNQX is consistent with the labeling of AMPA receptors. Autoradiographic studies showed that the distribution of [3H]NS 257 binding sites in rat brain was similar to that of [3H]AMPA binding sites. NS 257 is the first AMPA antagonist to be described showing an increased affinity for the AMPA receptor in the presence of thiocyanate.  相似文献   

17.
Kainic acid (KA), quisqualic acid (QUIS), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulated D-[3H]aspartate release from cultured cerebellar granule cells in a concentration-dependent way. The EC50 values were 50 microM for KA (Gallo et al., 1987) and 20 microM for both QUIS and AMPA, but the efficacy of QUIS appeared to be greater than that of AMPA. The release of D-[3H]aspartate induced by KA, QUIS, and AMPA was blocked, in a dose-dependent way, by the new glutamate receptor antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX); IC50 values were 0.7 microM in the case of AMPA (50 microM) and 1 microM in the case of KA (50 microM). AMPA (50-300 microM) inhibited the effect of 50 microM KA on D-[3H]aspartate release. At 300 microM AMPA, the effect of KA plus AMPA was not antagonized by the KA receptor antagonist kynurenic acid (KYN). In contrast, when KA was used at an ineffective concentration (10 microM), the addition of AMPA at concentrations below the EC50 value (10-20 microM) resulted in a synergistic effect on D-[3H]aspartate release. In this case, the evoked release of D-[3H]aspartate was sensitive to KYN. KA stimulated the formation of cyclic GMP, whereas QUIS, AMPA, and glutamate were ineffective. The accumulation of cyclic GMP elicited by KA (100 microM) was prevented not only by the antagonists CNQX (IC50 = 1.5 microM) and KYN (IC50 = 200 microM), but also by the agonists AMPA (IC50 = 50 microM) QUIS (IC50 = 3.5 microM), and glutamate (IC50 = 100 microM). We conclude that AMPA, like QUIS, may act as a partial agonist at KA receptors. Moreover, CNQX effectively antagonizes non-N-methyl-D-aspartate receptor-mediated responses in cultured cerebellar granule cells.  相似文献   

18.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

19.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

20.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号