首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uncovering ratio of phosphate groups in lysosomal enzymes is defined as the percentage of phosphomonoester groups in the oligosaccharide side chains based on the sum of phosphomonoester and phosphodiester groups. Using a new procedure for the specific and complete hydrolysis of uncovered phosphomonoester groups in denatured immunoprecipitates of human cathepsin D, we show that the uncovering ratio varies between different forms of the enzyme and may be used as an indicator of the maturation of its carbohydrate side chains. The uncovering ratio in the total (cellular and secreted) cathepsin D from U937 promonocytes is greater than 95%. It is only slightly decreased in cells incubated in the presence of 1 alpha,25-dihydroxycholecalciferol, in which the rate of synthesis of cathepsin D is several times higher than in the control cells. In U937 cells and also in fibroblasts, the uncovering is nearly complete in intermediate and mature forms of the intracellular cathepsin D but less extensive in the intracellular and secreted precursor. In both cell types, incubation with 10 mM NH4Cl results in a decrease in the uncovering ratio of total cathepsin D. However, the activity of the uncovering enzyme, N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, as determined with UDP-N-acetylglucosamine is not affected with up to 60 mM NH4Cl. Our results suggest that NH4Cl, in addition to its known effects on the acidic-pH-dependent functions of lysosomal compartments and of mannose-6-phosphate receptors, impairs the processing or transport of lysosomal enzyme precursors at, or proximally to, the site of the uncovering of their mannose-6-phosphate residues.  相似文献   

2.
The kinetic properties of UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) partially purified from the soil amoeba Acanthamoeba castellanii have been studied. The transferase phosphorylated the lysosomal enzymes uteroferrin and cathepsin D 3-90-fold better than nonlysosomal glycoproteins and 16-83-fold better than a Man9GlcNAc oligosaccharide. Deglycosylated uteroferrin was a potent competitive inhibitor of the phosphorylation of intact uteroferrin (Ki of 48 microM) but did not inhibit the phosphorylation of RNase B or the simple sugar alpha-methylmannoside. Deglycosylated RNase (RNase A) did not inhibit the phosphorylation of RNase B or uteroferrin. These results indicate that purified amoeba GlcNAc-phosphotransferase recognizes a protein domain present on lysosomal enzymes but absent in most nonlysosomal glycoproteins. The transferase also exhibited a marked preference for oligosaccharides containing mannose alpha 1,2-mannose sequences, but this cannot account for the high affinity binding to lysosomal enzymes. A. castellanii extracts do not contain detectable levels of N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, the second enzyme in the biosynthetic pathway for the mannose 6-phosphate recognition marker. We conclude that A. castellanii does not utilize the phosphomannosyl sorting pathway despite expression of very high levels of GlcNAc-phosphotransferase.  相似文献   

3.
T J Baranski  P L Faust  S Kornfeld 《Cell》1990,63(2):281-291
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the formation of mannose 6-phosphate residues. To identify this protein determinant, we constructed chimeric molecules between two aspartyl proteases: cathepsin D, a lysosomal enzyme, and pepsinogen, a secretory protein. When expressed in Xenopus oocytes, the oligosaccharides of cathepsin D were efficiently phosphorylated, whereas the oligosaccharides of a glycosylated form of pepsinogen were not phosphorylated. The combined substitution of two noncontinuous sequences of cathepsin D (lysine 203 and amino acids 265-292) into the analogous positions of glycopepsinogen resulted in phosphorylation of the oligosaccharides of the expressed chimeric molecule. These two sequences are in direct apposition on the surface of the molecule, indicating that amino acids from different regions come together in three-dimensional space to form this recognition domain. Other regions of cathepsin D were identified that may be components of a more extensive recognition marker.  相似文献   

4.
We have examined the phosphorylation of Asn-linked oligosaccharides introduced at seven novel sites on human cathepsin D to determine whether the location of an oligosaccharide on a lysosomal enzyme affects its ability to serve as a substrate for UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase), the enzyme that catalyzes the initial step in the biosynthesis of mannose 6-phosphate residues. The glycosylation sites were introduced into the cathepsin D cDNA by site-directed mutagenesis and were selected to be widely distributed over the surface of the molecule. When the constructs were expressed in Xenopus oocytes, the oligosaccharides at each glycosylation site were phosphorylated at levels considerably above background (19-70% phosphorylation versus < 0.4% for the secretory protein glycopepsinogen). However, oligosaccharides located closer to the essential components of the phosphotransferase recognition domain (lysine 203 and amino acids 265-292) were phosphorylated better than oligosaccharides located further away. Similar results were obtained for oligosaccharides at homologous sites on a pepsinogen/cathepsin D chimera containing only lysine 203 and residues 265-319 of cathepsin D, although the absolute levels of phosphorylation were lower. These results demonstrate that there is considerable flexibility in the placement of glycosylation sites on cathepsin D in terms of the ability of the oligosaccharides to serve as substrates for phosphotransferase, although oligosaccharides located closer to the phosphotransferase recognition determinant are preferentially phosphorylated.  相似文献   

5.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

6.
Several studies have suggested that autophagy might play a deleterious role in acute pancreatitis via intra-acinar activation of digestive enzymes. The prototype for this phenomenon is cathepsin B-mediated trypsin generation. To determine the organellar basis of this process, we investigated the subcellular distribution of the cathepsin B precursor, procathepsin B. We found that procathepsin B is enriched in Golgi-containing microsomes, suggesting a role for the ADP-ribosylation (ARF)-dependent trafficking of cathepsin B. Indeed, caerulein treatment increased processing of procathepsin B, whereas a known ARF inhibitor brefeldin A (BFA) prevented this. Similar treatment did not affect processing of procathepsin L. BFA-mediated ARF1 inhibition resulted in reduced cathepsin B activity and consequently reduced trypsinogen activation. However, formation of light chain 3 (LC3-II) was not affected, suggesting that BFA did not prevent autophagy induction. Instead, sucrose density gradient centrifugation and electron microscopy showed that BFA arrested caerulein-induced autophagosomal maturation. Therefore, ARF1-dependent trafficking of procathepsin B and the maturation of autophagosomes results in cathepsin B-mediated trypsinogen activation induced by caerulein.  相似文献   

7.
Cathepsin D is a bilobed lysosomal aspartyl protease that contains one Asn-linked oligosaccharide/lobe. Each lobe also contains protein determinants that serve as recognition domains for binding of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the first enzyme in the biosynthesis of the mannose 6-phosphate residues on lysosomal enzymes. In this study we examined whether the location of the protein recognition domain influences the relative phosphorylation of the amino and carboxyl lobe oligosaccharides. To do this, chimeric proteins containing either amino or carboxyl lobe sequences of cathepsin D substituted into a glycosylated form of the homologous secretory protein pepsinogen were expressed in Xenopus oocytes. The amino and carboxyl lobe oligosaccharides were then isolated from the various chimeric proteins and independently analyzed for their mannose 6-phosphate content. This analysis has shown that a phosphotransferase recognition domain located on either lobe of a cathepsin D/glycopepsinogen chimeric molecule is sufficient to allow phosphorylation of oligosaccharides on both lobes. However, phosphorylation of the oligosaccharide on the lobe containing the recognition domain is favored. We also found that the majority of the carboxyl lobe oligosaccharides of cathepsin D acquire two phosphates, whereas the amino lobe oligosaccharides only acquire one phosphate.  相似文献   

8.
We have previously shown that glucocorticoids regulate the trafficking and processing of mouse mammary tumor virus (MMTV) proteins in viral-infected M1.54 rat hepatoma cells. To examine the role of intracellular membrane integrity on MMTV protein maturation, brefeldin A (BFA) was utilized to disrupt membrane flow between the endoplasmic reticulum and Golgi. Immunoprecipitation and immunofluorescence microscopy revealed that in the presence of dexamethasone, BFA inhibited the proteolytic processing, cell surface delivery, and externalization of MMTV glycoproteins. Glycosidase digestion and inhibitors of protein glycosylation confirmed that the observed differences in apparent sizes of MMTV glycoprotein products are due to BFA-induced changes in oligosaccharide processing. BFA treatment inhibited the proteolytic processing of the MMTV phosphoprotein precursor, which normally associates with the cytoplasmic face of intracellular membranes. Similarities in salt extraction efficiency revealed that BFA did not affect the membrane affinity of the uncleaved phosphorylated precursor. In a complementary approach, proteolytic processing of the phosphorylated polyprotein did not occur in glucocorticoid-treated HTC cells transfected with a mutant MMTV provirus encoding a normal phosphorylated precursor, but which express a truncated MMTV glycoprotein missing its transmembrane domain and cytoplasmic tail. These results suggest that the MMTV glycoproteins and phosphoproteins may interact at a late step in the transport pathway in a manner required for their mutual processing in response to glucocorticoids and establishes the importance of functional interactions with intracellular membranes for maturation of the cytoplasmic MMTV phosphoproteins.  相似文献   

9.
Low density lipoprotein receptor (LDL-R) is a membrane glycoprotein carrying both N- and O-linked oligosaccharides, processing of which is reflected in conversion from a precursor to mature form during its synthesis and intracellular transport. Treatment with brefeldin A (BFA) of mouse macrophage-like J774 cells, Chinese hamster ovary cells, and two human cancer cell lines (A431 and IMC-2) resulted in production of LDL-R with a molecular size 5-10 kDa smaller than that of the mature form in the control cells. Treatment with sialidase caused apparent reduction in the molecular size of LDL-R synthesized in all BFA-treated J774, Chinese hamster ovary, A431, and IMC-2 cell lines as observed for the mature form of the control cells. Thus, O-linked sugar chains of LDL-R were apparently sialylated in the BFA-treated cells. We also examined the effect of BFA on the processing of another membranous glycoprotein, epidermal growth factor receptor (EGF-R) carrying only N-linked oligosaccharides. EGF-R synthesized in the presence of BFA was found to have no response to sialidase treatment, suggesting that the drug blocks the sialylation of EGF-R. The results indicate that BFA causes different effects on the sialylation of LDL-R and EGF-R depending upon linkage types of their oligosaccharides.  相似文献   

10.
A procedure is described that allows the characterization of the molecular forms of beta-hexosaminidase and cathepsin D in controls and pathological specimens of human serum and human urine. The following observations were made. (1) In human serum, beta-hexosaminidase (alpha- and beta-chain) and cathepsin D are present predominantly in their high-molecular-weight precursor forms. In human urine, these enzymes exist as both precursor and mature forms. (2) Cathepsin D precursor from serum and urine differs in the number of oligosaccharides that are sensitive to endo-beta-N-acetylglucosaminidase H. Therefore the urine enzyme is not likely to originate from the serum. (3) The presence exclusively of precursors of beta-hexosaminidase and of cathepsin D in the sera of patients with hepatitis suggests that in hepatitis secretion of lysosomal enzymes is elevated, rather than the enzymes leaking from damaged cells. (4) In the urine of patients with nephrotic syndrome, beta-hexosaminidase and cathepsin D are present in grossly elevated amounts, but do not differ in the polypeptide patterns from controls. (5) In urine from a patient with mucolipidosis II, the elevated activity of beta-hexosaminidase is accounted for mainly by the precursor forms. Mature beta-chain of beta-hexosaminidase is lacking, and incompletely processed beta-hexosaminidase polypeptides are present. Both the precursor and the mature forms of cathepsin D are increased. They contain only complex oligosaccharides.  相似文献   

11.
We have investigated the nature of a protein domain that is shared among lysosomal hydrolases and is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose 6-phosphate residues. Previously, elements of this recognition domain were identified using a chimeric protein approach. The combined substitution of two regions (amino acids 188-230, particularly lysine 203, and 265-292) from the carboxyl lobe of the lysosomal hydrolase cathepsin D into the homologous positions of the related secretory protein glycopepsinogen was sufficient to confer recognition by phosphotransferase and subsequent phosphorylation of the oligosaccharides when this chimeric protein was expressed in Xenopus oocytes. (Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Cell 63, 281-291). The current study demonstrates that when these two regions are replaced in cathepsin D by the homologous glycopepsinogen amino acids, the resultant chimeric molecule is poorly phosphorylated. However, when either of these regions is substituted individually, the chimeric molecules are well phosphorylated. The phosphorylation of these latter chimeric proteins is dependent on the presence of procathepsin D amino lobe elements. By analyzing a series of chimeric proteins that contain all eight combinations of three consecutive segments of the entire amino lobe of procathepsin D, it was found that multiple regions of the amino lobe of cathepsin D enhance phosphorylation of the chimeric proteins. These elements may be part of an extended carboxyl lobe recognition domain or comprise a second independent recognition domain.  相似文献   

12.
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose-6-P residues. Previously, we generated a lysosomal enzyme recognition domain by substituting two regions (lysine 203 and amino acids 265-292) of the lysosomal hydrolase cathepsin D into a related secretory protein glycopepsinogen. When expressed in Xenopus oocytes, the oligosaccharides of the chimeric protein were efficiently phosphorylated (Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Cell 63, 281-291). In the current study, incremental substitutions of cathepsin D residues into glycopepsinogen and alanine-scanning mutagenesis were utilized to define the recognition domain more precisely. A computer-generated model of the cathepsin D/pepsinogen chimeric molecule served as a guide for mutagenesis and for the interpretation of results. These studies indicate that the recognition domain is a surface patch that contains multiple interacting sites. There is a strict positional requirement for the lysine residue at position 203.  相似文献   

13.
The threonine analog beta-hydroxynorvaline is an inhibitor of asparagine-linked glycosylation. In the presence of the analog human fibroblasts synthesized cathepsin D molecules containing two, one, or no oligosaccharides. The nonglycosylated cathepsin D precursor was but a minor species and was degraded within 45 min of its synthesis, presumably in the lumen of the endoplasmic reticulum. The polypeptides with one or two oligosaccharides were normally segregated into lysosomes and their proteolytic maturation was not affected. The stability of mature glycosylated and nonglycosylated cathepsin D polypeptides within the lysosomes, however, was markedly decreased. The recovery of cathepsin D polypeptides was increased in the presence of inhibitors of cysteine and aspartyl-proteinases. These data suggest that the absence of carbohydrate side chains in cathepsin D results in an enhancement of the degradation rate of the precursor in the endoplasmic reticulum, and the replacement of threonine by beta-hydroxynorvaline in an enhanced degradation of the mature cathepsin D in lysosomes.  相似文献   

14.
The synthesis, transport and processing of lysosomal enzymes was examined in human hepatoma HepG2 cells and in human fibroblasts exposed to the Golgi alpha-mannosidase I inhibitor 1-deoxy-manno-nojirimycin. In HepG2 cells cathepsin D, beta-hexosaminidase and arylsulfatase B synthesized in the presence of 5 mM 1-deoxy-manno-nojirimycin contained exclusively endo-beta-N-acetylglucosaminidase H-cleavable oligosaccharides, indicating that alpha-mannosidase I had been inhibited efficiently. The proteolytic processing of intracellularly retained cathepsin D was retarded and the fraction of secreted cathepsin D was increased two-fold. In fibroblasts neither segregation nor maturation of cathepsin D were affected by 1-deoxy-manno-nojirimycin in spite of the inhibition of oligosaccharide processing. In the presence of the glucosidase I inhibitor 1-deoxynojirimycin, the precursor of cathepsin D (larger by about 1 kDa than the secreted form) accumulated transiently in light membranes in HepG2 cells. Release from the site of accumulation was accompanied by a decrease in size by about 1 kDa. This change was attributed to the removal of glucose residues. In fibroblasts the transient accumulation of larger precursors in the presence of 1-deoxynojirimycin was more pronounced than in HepG2 cells. The differential effects of alpha-mannosidase I and glucosidase I inhibitors on the transport of cathepsin D in HepG2 cells and fibroblasts may indicate that different intermediates in the biosynthetic pathway of asparagine-linked oligosaccharides participate in the transport of lysosomal enzymes in the two cell types.  相似文献   

15.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

16.
The biosynthesis and proteolytic processing of lysosomal cathepsin L was studied using in vitro translation system and in vivo pulse-chase analysis with [35S]methionine and [32P]phosphate in primary cultures of rat hepatocytes. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of a primary translation product of an immunoprecipitable 37.5-kDa cathepsin L in vitro. The 37.5-kDa form was converted to the 39-kDa form when translated in the presence of dog pancreas microsomes. During pulse-chase experiments with [35S]methionine in cultured rat hepatocytes, cathepsin L was first synthesized as a 39-kDa protein, presumably the proform, after a short time of labeling, and was subsequently processed into the mature forms of 30 and 25 kDa in the cell. On the other hand, considerable amounts of the proenzyme were found to be secreted into the culture medium without further proteolytic processing during the chase. The precursor and mature enzymes were N-glycosylated with high-mannose-type oligosaccharides, and the proenzyme molecule contained phosphorylated oligosaccharides. The effects of tunicamycin and chloroquine were also investigated. In the presence of tunicamycin, a 36-kDa unglycosylated polypeptide appeared in the cell and this protein was exclusively secreted from the cells without undergoing proteolytic processing. These results suggest that cathepsin L is initially synthesized on membrane-bound polysomes as a 37.5-kDa prepropeptide and that the cotranslational cleavage of the 1.5-kDa signal peptide and the core glycosylation convert the precursor to the 39-kDa proform, which is subsequently processed to the mature form during biosynthesis. Thus, the biosynthesis and secretion of lysosomal cathepsin L in rat hepatocytes seem to be analogous to those of the major excreted protein of transformed mouse fibroblasts [S. Gal, M. C. Willingham, and M. M. Gottesman (1985) J. Cell Biol. 100, 535-544] and the mouse cysteine proteinase of activated macrophages [D.A. Portnoy, A. H. Erickson, J. Kochan, J. V. Ravetch, and J. C. Unkeless (1986) J. Biol. Chem. 261, 14697-14703].  相似文献   

17.
Biosynthesis, transport, and maturation of cathepsin D and beta-hexosaminidase was examined in fibroblasts exposed to 1-deoxynojirimycin, a glucose analogue known to inhibit trimming glucosidases (Saunier, B., Kilker, R. D., Jr., Tkacz, J. S., Quaroni, A., and Herscovics, A. (1982) J. Biol. Chem. 257, 14155-14161; Hettkamp, H., Bause, E., and Legler, G. (1982) Biosci. Rep. 2, 899-906). Cells treated with 1-deoxynojirimycin contained precursors of cathepsin D and beta-hexosaminidase larger by about 1-2 kDa than control cells. The shift in molecular size was probably due to glucose residues that were rapidly removed from the precursors in the absence but not in the presence of 1-deoxynojirimycin. In addition, 1-deoxynojirimycin inhibited the glycosylation of the beta-chain precursor of beta-hexosaminidase and the synthesis of glycoproteins, including that of cathepsin D. The proteolytic processing of the larger precursors was retarded by several hours. The delay in proteolytic maturation was secondary to the accumulation of the larger precursors in organelles, which fractionated with membranes of the endoplasmic reticulum and Golgi complex. The accumulated cathepsin D precursor contained neither mannose 6-phosphate residues nor complex type oligosaccharides, which are formed in the cis and trans aspects of the Golgi complex. Cathepsin D precursors eventually released from the site of accumulation were apparently deglucosylated, acquired mannose 6-phosphate residues and complex type oligosaccharides, and were transferred into lysosomes as efficiently as in control cells. Our results suggest that transport of cathepsin D from the endoplasmic reticulum to the Golgi complex depends on removal of glucose residues from its carbohydrate.  相似文献   

18.
The weak bases chloroquine, primaquine, NH4Cl and the ionophore monensin exert similar but not identical effects on sorting, transport and processing of cathepsin D in several human cell lines (fibroblasts, HepG2 cells, U937, monocytes). The drugs inhibit the segregation of newly synthesized cathepsin D from the secretory route. The kinetics of transport of nonsegregated cathepsin D precursor along the secretory route is retarded resulting in a delayed hypersecretion. Higher concentrations of the drugs can arrest the intracellular transport completely. The extent of inhibition of segregation varies among the different human cell types tested. Thus, in fibroblasts the secretion can be stimulated to exceed 80%, while in U937 cells the secretion cannot be enhanced above 50% although both cell types have the same basal rate of secretion (approximately 10% of the synthesized cathepsin D). We suggest that pH-independent sorting mechanisms contribute to the targeting of cathepsin D in U937 cells. Processing of the cathepsin D remaining in cells is characteristically changed depending on the drug. The proteolytic processing is strongly inhibited by chloroquine and is rather insensitive to monensin. Unlike the other drugs, monensin blocks the formation of complex oligosaccharides in cathepsin D and allows for extensive secretion solely of molecules that are sensitive to endo H.  相似文献   

19.
We have investigated the oligosaccharide requirements of the UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum. Uteroferrin, an acid hydrolase, was phosphorylated by the three N-acetylglucosaminylphosphotransferases, and the phosphorylated oligosaccharides were isolated and analyzed by ion suppression high performance liquid chromatography. In all three cases, the phosphorylated species contained 6 or more mannose residues. Phosphorylation of the Man5GlcNAc2 oligosaccharide could not be detected even though this was the major species on the native uteroferrin. The Man5GlcNAc2 oligosaccharides lack alpha 1,2-linked mannose residues, whereas the larger oligosaccharides contain 1 or more mannose residues in this linkage. Treatment of intact uteroferrin with an alpha 1,2-specific mannosidase-generated molecules whose oligosaccharides consisted almost entirely of species with 5 mannose residues. The N-acetylglucosaminylphosphotransferases could no longer phosphorylate such molecules. These data indicate that at least 1 alpha 1,2-linked mannose residue must be present on uteroferrin's oligosaccharide for phosphorylation to occur.  相似文献   

20.
Inhibition by cyanate of the processing of lysosomal enzymes   总被引:9,自引:3,他引:6       下载免费PDF全文
In cultured human fibroblasts, maturation of the lysosomal enzymes beta-hexosaminidase and cathepsin D is inhibited by 10 mM-potassium cyanate. In cells treated with cyanate the two enzymes accumulate in precursor forms. The location of the accumulated precursor is probably non-lysosomal; in fractionation experiments the precursors separate from the bulk of the beta-hexosaminidase activity. The secretion of the precursor of cathepsin D, but not that of beta-hexosaminidase precursor, is enhanced in the presence of cyanate. The secreted cathepsin D, as well as that remaining within the cells, contains mostly high-mannose oligosaccharides cleavable with endo-beta-N-acetylglucosaminidase H. After removal of cyanate, the accumulated precursor forms of the lysosomal enzymes are largely released from the pretreated cells. It is concluded that cyanate interferes with the maturation of lysosomal-enzyme precursors by perturbing their intracellular transport. Most probably cyanate affects certain functions of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号