首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxytocin (OT) is a neuropeptide with an extremely low endogenous level (low pg/ml) in human plasma. It is very challenging to develop a highly sensitive assay to measure endogenous OT, including radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA). Electrospray ionization (ESI) liquid chromatography–tandem mass spectrometry (LC–MS/MS) can provide high-throughput and selective methods for quantification of peptides in biological samples. A novel and highly sensitive two-dimensional LC–MS/MS (2D-LC–MS/MS) assay combining solid-phase extraction (SPE) has been developed and validated for the determination of endogenous OT in both human and rat plasma. The lower limit of quantification (LLOQ) was 1.00 pg/ml for human and 50.0 pg/ml for rat. Human plasma diluted with water (1:6, v/v) was successfully optimized as a surrogate matrix for human to prepare standard curves without endogenous interference. The extraction efficiency and absolute recovery were above 65.8% using the HLB SPE procedure, and matrix effects were lower than 12%. The method was validated in the range of 1.00–250 pg/ml for human plasma and 50.0–10,000 pg/ml for rat plasma with precision less than 12.7% and accuracy less than 7%.  相似文献   

2.
A liquid chromatography tandem mass spectrometry (LC-MS-MS) method for determination of the analgesic aminophenol ketobemidone in human plasma is presented. Two preparation methods for plasma samples containing ketobemidone were compared, liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Both methods showed good precision (n=10), 1.7% and 2.9%, respectively (0.04 micro M) and 1.1% and 2.5%, respectively (0.14 micro M). The accuracy was 98% and 103%, respectively (0.04 micro M) and 105% and 99%, respectively (0.14 micro M). Ketobemidone could be quantified at 0.43 nM, with a relative standard deviation of 17.5% (n=19) using LLE and 18.6% (n=10) using SPE. This level was an order of magnitude lower than earlier reported quantification limits. Quantitative data from plasma samples analyzed with LC-MS-MS were in good agreement with those obtained by gas chromatography with chemical ionization mass spectrometry (GC-CI/MS). This indicates that LC-MS-MS is a good alternative method to GC-MS as it is more sensitive and time-consuming derivatization can be avoided.  相似文献   

3.
Fumonisins are water soluble mycotoxins produced by the fungus Fusarium verticillioides (formerly F. moniliforme). Fumonisin B(1) (FB(1)) is a diester of propane-1,2,3-tricarboxylic acid and 2-amino-12, 16-dimethyl-3,5,10,14,15-pentahydroxyeicosane, and is the most abundant of the naturally occurring fumonisins. Upon removal of the two tricarballylic acid side chains, the structure is referred to as hydrolyzed FB(1) (HFB(1)). FB(1) and HFB(1) are structurally similar to sphinganine, a sphingoid base. The fumonisins do not absorb UV light or fluoresce; therefore, derivatizing reagents are used for detection when separation is by high performance liquid chromatography (HPLC). The standard derivatizing reagent used for HPLC is ortho-phthalaldehyde (OPA) plus 2-mercaptoethanol (ME) reaction partner, however, the OPA-FB(1) derivative is not stable at room temperature. The objectives of this study were to: (1). determine the effect of temperature on the stability of the OPA-FB(1) derivative and (2). determine which structural characteristics of FB(1) contribute to the instability of the OPA-FB(1) derivative. The results indicate that OPA-FB(1), OPA-FB(3) and OPA-HFB(1) derivatives are unstable at 24 degrees C but that their stability improves significantly at 4 degrees C. The OPA-sphinganine derivative is stable for at least 24h at 24 degrees C. Thus, the instability of the OPA-FB(1) derivative may be attributed to its lack of a hydroxyl group at the carbon 1 position.  相似文献   

4.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of dutasteride (I), a potent and the first specific dual inhibitor of 5alpha-reductase, in human plasma. The analyte and internal standard (finasteride (II)) were extracted by liquid-liquid extraction with diethyl ether/dichloromethane (70/30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reverse phase Xterra MS C18 column with a mobile phase of 10 mM ammonium formate/acetonitrile (15/85, v/v, pH adjusted to 3.0 with formic acid). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 529.5 --> 461.5 and m/z 373.3 --> 317.4 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.1-25.0 ng/mL for dutasteride in human plasma. The lower limit of quantitation was 100 pg/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 1.2 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples/day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

5.
A new liquid chromatography assay with isocratic elution and tandem mass spectrometry detection (LC-MS/MS) using an electrospray ionization interface in the multiple reaction monitoring mode was developed and validated for ertapenem determination in microdialysate samples. Linearity was demonstrated between 10ngmL(-1) (lower limit of quantification, LLoQ) and 160ngmL(-1). The precision (CV%) and accuracy (bias%) in microdialysates at the LLoQ were respectively 2.2% and 17.3% within-day and 10.6% and 2.7% between-days. Ertapenem was stable for 1 month at -20 degrees C and -80 degrees C but unstable at +4 degrees C. This new LC-MS/MS assay is simple, rapid and more sensitive than previously described assays.  相似文献   

6.
A sensitive and convenient high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the opioid receptor agonist-antagonist butorphanol in human plasma is described. BC-2605, a cyclopropyl analogue of butorphanol, was employed as an internal standard. Butorphanol was recovered from plasma (84.4 +/- 10.9%) by liquid-liquid extraction. The mobile phase flow-rate was 0.3 ml/min and consisted of methanol-water-formic acid (90:10:0.1, v/v/v). The analytical column (4.6 x 100 mm) was packed with Partisil C(8) (5 microm). The standard curve was linear from 13.7 to 1374 pg/ml (r(2)>0.99). The lower limit of quantitation was 13.7 pg/ml. The assay was specific, accurate (% deviation from nominal concentrations were <15%), precise and reproducible (within- and between-day coefficients of variation <7%). Butorphanol in plasma was stable over 3 freeze/thaw cycles and at room temperature for 1 day. The utility of the assay was demonstrated by following butorphanol plasma concentrations in two healthy subjects for 24 h following a 1 mg intranasal dose.  相似文献   

7.
A selective and sensitive method for the determination of the HIV protease inhibitor saquinavir in human plasma, saliva, and urine using liquid-liquid extraction and LC-MS-MS has been developed, validated, and applied to samples of a healthy individual. After extraction with ethyl acetate, sample extracts were chromatographed isocratically within 5 min on Kromasil RP-18. The drug was detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source and 2H(5)-saquinavir as internal standard. The limit of quantification was 0.05 ng/mL. The accuracy of the method varied between -1 and +10% (SD within-batch) and the precision ranged from +4 to +10% (SD batch-to-batch). The method is linear at least within 0.05 and 87.6 ng/mL. After a regular oral dose (600 mg) saquinavir concentrations were detectable for 48 h in plasma and were well correlated with saliva concentrations (r(2)=0.9348, mean saliva/plasma ratio 1:15.1). The method is well suited for low saquinavir concentrations in different matrices.  相似文献   

8.
A sensitive and highly selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to determine nimodipine in human plasma. The analyte and internal standard nitrendipine were extracted from plasma samples by n-hexane-dichloromethane-isopropanol (300:150:4, v/v/v), and chromatographed on a C(18) column. The mobile phase consisted of methanol-water-formic acid (80:20:1, v/v/v). Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI) source. The method has a limit of quantification of 0.24 ng/ml. The linear calibration curves were obtained in the concentration range of 0.24-80 ng/ml. The intra- and inter-day precisions were lower than 4.4% in terms of relative standard deviation (R.S.D.), and the accuracy ranged from 0.0 to 5.8% in terms of relative error (RE). This validated method was successfully applied for the evaluation of pharmacokinetic profiles of nimodipine tablets administered to 18 healthy volunteers.  相似文献   

9.
For the endogenous substances with an ultra-low level in biological fluids, such as melatonin, the blank biological matrix is obviously not "blank". This problem leads to a serious issue of the bioanalytical methods development and validation by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). This work developed and validated an ultra-high sensitive bioanalytical method for plasma melatonin by LC-MS/MS using water as calibration matrix. The lower limit of quantitation of the method was verified to be 1.0 pg/mL and the method exhibited a linear range of 1-5000 pg/mL. Potential matrix effects, accuracy and precision were fully monitored and validated by two complementary quality control approaches respectively using water and the pooled plasma as matrix. The intra-run and inter-run precisions were less than 11.5% and 12.2%, respectively, and the relative error was below ± 13.8% for all of 5 quality control levels. The method was successfully applied to investigate the daytime (8:00 AM-8:00 PM) baseline level of endogenous plasma melatonin, as well as the pharmacokinetic profiles of exogenous melatonin after oral administration in beagle dogs.  相似文献   

10.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of levonorgestrel in plasma was developed. An Applied Biosystems API 3000 triple quadrupole mass spectrometer set to multiple reaction monitoring (MRM) mode, using atmospheric pressure photospray ionisation (APPI) in the positive mode. Using 17-alpha-methyltestosterone as internal standard (IS), liquid-liquid extraction was followed by reversed phase liquid chromatography using a phenyl-hexyl column and tandem mass spectrometric detection. The mean recovery for levonorgestrel and 17-alpha-methyltestosterone was 99.5 and 62.9%, respectively. The method was validated from 0.265 to 130 ng levonorgestrel/ml plasma with the lower limit of quantification (LLOQ) set at 0.265 ng/ml. This assay method makes use of the increased sensitivity and selectivity of tandem mass spectrometric (MS/MS) detection, allowing for a rapid (extraction and chromatography) and selective method for the determination of levonorgestrel in human plasma. The assay method was used in a pharmacokinetic study to quantify levonorgestrel in human plasma samples generated after administrating a single oral dose of 1.5 mg levonorgestrel to healthy female volunteers for up to five half lives. The total chromatographic runtime of this method was 5.0 min per sample, allowing for analysis of a large number of samples per batch.  相似文献   

11.
A robust, rapid, selective and sensitive liquid chromatography-negative atmospheric pressure chemical ionization (LC-(APCI(-))-MS-MS) method has been developed for the quantification of mometasone furoate (MF) in human plasma utilizing a solid-phase extraction clean-up step and 13C-fluticasone propionate as internal standard. The intra- and inter-day coefficients of variation were < or = 15% and the lower limit of quantification (LLOQ) was 15 pg/ml. This method is ideally suited for pharmacokinetic investigations of low MF levels following inhalation of MF.  相似文献   

12.
We developed a highly sensitive liquid chromatography-tandem mass spectrometry assay (LC-MS-MS) for a glycopeptide antibacterial drug, vancomycin (VCM), in rat plasma. After precipitating 100 micro l of plasma with 300 micro l of 10% trifluoroacetic acid-methanol (2:1, v/v), the supernatant was diluted with 300 micro l of distilled water and was passed through a filter. LC-MS-MS equipped with electrospray ionization in the positive ion mode used a pair of ions at 725/144 m/z for VCM in the multiple reaction-monitoring mode with a sample injection volume of 20 micro l. The calibration curve had a linear range from 0.01 to 20 micro g/ml when linear least square regression was applied to the concentration versus peak area plot. The drug in the sample was detected within 5 min. Precision, accuracy and limit of quantitation indicated that this method was suitable for the quantitative determination of VCM in rat plasma. Using this method, we defined for the first time that the oral bioavailability of VCM in rats was 0.069%. This method can be applied to basic pharmacokinetic and pharmaceutical studies in rats.  相似文献   

13.
A sensitive and simple method was developed for determination of the enantiomers of azelnidipine, (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, in human plasma using chiral liquid chromatography with positive ion atmospheric pressure chemical ionization tandem mass spectrometry. Plasma samples spiked with stable isotope-labeled azelnidipine, [(2)H(6)]-azelnidipine, as an internal standard, were processed for analysis using a solid-phase extraction in a 96-well plate format. The azelnidipine enantiomers were separated on a chiral column containing alpha(1)-acid glycoprotein as a chiral selector under isocratic mobile phase conditions. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, monitoring the transitions from m/z 583-->167 for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, and from m/z 589-->167 for [(2)H(6)]-azelnidipine. The standard curve was linear over the studied range (0.05-20 ng/mL), with r(2)>0.997 using weighted (1/x(2)) quadratic regression, and the chromatographic run time was 5.0 min/injection. The intra- and inter-assay precision (coefficient of variation), calculated from the assay data of the quality control samples, was 1.2-8.2% and 2.4-5.8% for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, respectively. The accuracy was 101.2-117.0% for (R)-(-)-azelnidipine and 100.0-107.0% for (S)-(+)-azelnidipine. The overall recoveries for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine were 71.4-79.7% and 71.7-84.2%, respectively. The lower limit of quantification for both enantiomers was 0.05 ng/mL using 1.0 mL of plasma. All the analytes showed acceptable short-term, long-term, auto-sampler and stock solution stability. Furthermore, the method described above was used to separately measure the concentrations of the azelnidipine enantiomers in plasma samples collected from healthy subjects who had received a single oral dose of 16 mg of azelnidipine.  相似文献   

14.
A rapid and sensitive method to determine colchicine in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. Colchicine and the internal standard (I.S.), tegafur, were extracted from the matrix with n-hexane:dichloromethane:isopropanol (300:150:15, v/v/v) and separated by reversed-phase high-performance liquid chromatography (HPLC) using formic acid:10 mM ammonium acetate:methanol (1:49:75, v/v/v) as the mobile phase in a run time of 2.5 min. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring (MRM) mode. The assay was linear in the concentration range 0.050-10 ng/ml with intra- and inter-day precision (as relative standard deviation (R.S.D.)) of <2 and <7%, respectively. The method was applied to a pharmacokinetic study of colchicine in healthy volunteers given an oral dose of 2.0 mg.  相似文献   

15.
Type-2 diabetes is a disorder characterized by disrupted insulin production leading to high blood glucose levels. To control this disease, combination therapy is often used. Hypoglycemic agents such as metformin, glipizide, glyburide, repaglinide, rosiglitazone, nateglinide, and pioglitazone are widely prescribed to control blood sugar levels. These drugs provide the basis for the development of a quantitative multianalyte bioanalytical method. As an example, a highly sensitive and selective multi-drug method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. This rapid, automated method consists of protein precipitation of 20 microL of plasma coupled with gradient HPLC elution of compounds using 10 mM ammonium formate buffer and 0.1% formic acid in acetonitrile as the mobile phases. MS/MS detection was performed using turbo ion spray in the positive ion multiple reaction monitoring (SRM) mode. A lower limit of quantitation (LLQ) in a range of 1.0-5.0 ng/mL was achieved for all analytes. The linearity of the method was observed over a 500-fold dynamic range. Drug recoveries ranged from 86.2 to 94.2% for all analytes of interest. Selectivity, sample dilution, intra-day and inter-day accuracy and precision, and stability assessment were evaluated for all compounds.  相似文献   

16.
We determined cabergoline and L-dopa in human plasma using liquid chromatography-mass spectrometry with tandem mass spectrometry (LC-MS-MS). The deproteinized plasma samples with organic solvent or acid were analyzed directly by reversed-phase liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 381 of m/z 452 for cabergoline and m/z 152 of m/z 198 for L-dopa) on LC-MS-MS with electrospray ionization (ESI), cabergoline and L-dopa in human plasma were determined. Calibration curves of the method showed a good linearity in the range 5-250 pg/ml for cabergoline and 1-200 ng/ml for L-dopa, respectively. The limit of determination was estimated to be approximately 2 pg/ml for cabergoline and approximately 0.1 ng/ml for L-dopa, respectively. The method was applied to the analysis of cabergoline and L-dopa in plasma samples from patients treated with these drugs. The precision of analysis showed coefficients of variation ranging from 3.8% to 10.5% at cabergoline concentration of 13.8-26.2 pg/ml and from 2.9% to 8.9% at an L-dopa concentration of 302.5-522.1 ng/ml in patient plasma. As a result, the procedure proved to be very suitable for routine analysis.  相似文献   

17.
This method provides a simple extraction procedure, as well as a validated, sensitive, and specific liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of ampicillin, piperacillin, tazobactam, meropenem, acyclovir, and metronidazole in human plasma. The method was validated over concentration ranges specific for each compound, with a lower limit of quantification of 50-300 ng/mL and a sample volume of 50 μL. The method is accurate and precise, with within- and between-day accuracy ranging from 85 to 110% and 92 to 110%, respectively, and within- and between-day precision of 89-111% and 91-109%, respectively. Simplicity, low plasma volume, and high throughput make this method suitable for clinical pharmacokinetic studies in premature infants.  相似文献   

18.
A rapid, sensitive and specific method was developed and validated using LC/MS/MS for determination of sorafenib in human plasma. Sample preparation involved a single protein precipitation step by the addition of 0.1 mL of plasma with 0.5 mL acetonitrile. Analysis of the compounds of interest including the internal standard ([(2)H(3)(15)N] sorafenib) was achieved on a Waters X-Terra C(18) (150 mm x 2.1mm i.d., 3.5 microm) analytical column using a mobile phase consisting of acetonitrile/10 mM ammonium acetate (65:35, v/v) containing 0.1% formic acid and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the range of 7.3-7260 ng/mL for the human plasma samples with values for the coefficient of determination of >0.96. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical methods (<15%).  相似文献   

19.
An immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantitation of the zinc endopeptidase matrix metalloproteinase 9 (MMP-9) from mouse serum. Sample preparation for the assay included magnetic bead-based enrichment using an MMP-9 antibody and was performed in a 96-well plate format using a liquid-handling robotic platform. The surrogate peptide GSPLQGPFLTAR derived from MMP-9 by trypsin digestion was monitored using an on-line capillary flow trap-release chromatography setup incorporating a series of trap columns (C18, strong cation exchange, and another C18) prior to nanoflow chromatography and nanospray ionization with selected reaction monitoring (SRM) detection. The assay was fit-for-purpose validated and found to be accurate (<15% interbatch relative error) and precise (<15% interbatch coefficient of variation) across a range from 0.03 to 7.3 nM mouse MMP-9. Finally, the method was employed to measure MMP-9 concentrations in 30 naïve mouse serum samples, and results were compared with those obtained by an immunoassay.  相似文献   

20.
To support clinical development, a liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed and validated for the determination of desloratadine (descarboethoxyloratadine) and 3-OH desloratadine (3-hydroxydescarboethoxyloratadine) concentrations in human plasma. The method consisted of automated 96-well solid-phase extraction for sample preparation and liquid chromatography/turbo ionspray tandem mass spectrometry for analysis. [2H(4)]Desloratadine and [2H(4)]3-OH desloratadine were used as internal standards (I.S.). A quadratic regression (weighted 1/concentration(2)) gave the best fit for calibration curves over the concentration range of 25-10000 pg/ml for both desloratadine and 3-OH desloratadine. There was no interference from endogenous components in the blank plasma tested. The accuracy (%bias) at the lower limit of quantitation (LLOQ) was -12.8 and +3.4% for desloratadine and 3-OH desloratadine, respectively. The precision (%CV) for samples at the LLOQ was 15.1 and 10.9% for desloratadine and 3-OH desloratadine, respectively. For quality control samples at 75, 1000 and 7500 pg/ml, the between run %CV was 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号