共查询到20条相似文献,搜索用时 0 毫秒
1.
Olivia Novac David Alvarez Christopher E Pearson Gerald B Price Maria Zannis-Hadjopoulos 《The Journal of biological chemistry》2002,277(13):11174-11183
We previously identified and purified from human (HeLa) cells a 66-kDa cruciform-binding protein, CBP, with binding specificity for cruciform DNA regardless of its sequence. DNA cruciforms have been implicated in the regulation of initiation of DNA replication. CBP is a member of the 14-3-3 family of proteins, which are conserved regulatory molecules expressed in all eukaryotes. Here, the in vivo association of CBP/14-3-3 with mammalian origins of DNA replication was analyzed by studying its association with the monkey replication origins ors8 and ors12, as assayed by a chromatin immunoprecipitation assay and quantitative PCR analysis. The association of the 14-3-3beta, -epsilon, -gamma, and -zeta isoforms with these origins was found to be approximately 9-fold higher, compared with other portions of the genome, in logarithmically growing cells. In addition, the association of these isoforms with ors8 and ors12 was also analyzed as a function of the cell cycle. Higher binding of 14-3-3beta, -epsilon, -gamma, and -zeta isoforms with ors8 and ors12 was found at the G(1)/S border, by comparison with other stages of the cell cycle. The CBP/14-3-3 cruciform binding activity was also found to be maximal at the G(1)/S boundary. The involvement of 14-3-3 in mammalian DNA replication was analyzed by studying the effect of anti-14-3-3beta, -epsilon, -gamma, and -zeta antibodies in the in vitro replication of p186, a plasmid containing the minimal replication origin of ors8. Anti-14-3-3epsilon, -gamma, and -zeta antibodies alone or in combination inhibited p186 replication by approximately 50-80%, while anti-14-3-3beta antibodies had a lesser effect ( approximately 25-50%). All of the antibodies tested were also able to interfere with CBP binding to cruciform DNA. The results indicate that CBP/14-3-3 is an origin-binding protein, acting at the initiation step of DNA replication by binding to cruciform-containing molecules, and dissociates after origin firing. 相似文献
2.
3.
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication. 相似文献
4.
5.
Discrete regions of simian virus 40 large T antigen are required for nonspecific and viral origin-specific DNA binding. 总被引:30,自引:21,他引:9 下载免费PDF全文
The nondefective adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses, Ad2+ND2 and Ad2+ND4, have been used to determine which regions of the SV40 genome coding for the large tumor (T) antigen are involved in specific and nonspecific DNA binding. Ad2+ND2 encodes 45,000 M4 (45K) and 56,000 Mr (56K) T antigen-related polypeptides. The 45K polypeptide did not bind to DNA, but the 56K polypeptide bound nonspecifically to calf thymus DNA, Ad2+ND4 encodes 50,000 Mr (60K), 66,000 Mr (66K), 70,000 Mr (70K), 74,000 Mr (74K), and 90,000 Mr (90K) T antigen-related polypeptides, all of which bound nonspecifically to calf thymus DNA. However, in more stringent assays, where tight binding to viral origin sequences was tested, only the 90K protein specified by Ad2A+ND4 showed specific high affinity for sequences at the viral origin of replication. From these results and previously published experiments describing the SV40 DNA integrated into these hybrid viruses, it was concluded that SV40 early gene sequences located between 0.39 and 0.44 SV40 map units contribute to nonspecific DNA binding, whereas sequences located between 0.50 and 0.63 SV40 map units are necessary for specific binding to the viral origin of replication. 相似文献
6.
A. J. Levine P. C. van der Vliet B. Rosenwirth C. Anderson J. Rabek A. Levinson S. Anderson 《Molecular and cellular biochemistry》1976,11(2):79-95
1. The human adenoviruses types 2, 5 and 12 code for the production of a single strand specific DNA binding protein. The molecular weights of these proteins were 72,000 for types 2 and 5 and 60,000 for type 12. In all three cases proteolytic breakdown fragments of these binding proteins (48,000 MW) were also observed. 2. Analysis of the methionine containing tryptic peptides of these proteins indicate that the types 2 and 5 proteins are similar and clearly distinguishable from the type 12 protein. The peptide maps of these three viral proteins are clearly different from a similar protein found in mock infected cells. 3. Temperature sensitive mutants of type 5 (H5ts125) and type 12(H12tsA275) adenoviruses fail to produce these proteins at the nonpermissive temperature. H5ts125 infected cells grown at the permissive temperature produce a 72,000 MW protein that is thermolabile, for continued binding to DNA, when compared to type 5 wild type adenovirus 72,000 MW protein. An analysis of the phenotype of this adenovirus mutant indicates that it codes for a viral function at early times after infection that is required for viral DNA replication. 4. The in vitro translation of adenovirus specific m-RNA results in the synthesis of a small amount of a 72,000 MW protein that binds to single stranded DNA just like the authentic adenovirus DNA binding proteins produced in infected cells. 5. Adenovirus anti-Tumor antigen (T) anti-serum from hamsters carrying independently derived adenovirus tumors, have been tested for the presence of antibody to purified DNA binding proteins. One antiserum is positive for these antibodies while the other is negative. These results indicate that some, but not all, adenovirus tumors contain large enough levels of the DNA binding proteins to elicit an antibody response. 6. The type 5 adenovirus temperature sensitive mutant, H5ts125, that codes for a thermolabile DNA binding protein, was complemented or suppressed at the nonpermissive temperature, for the replication of adenovirus DNA, by SV40. SV40tsA temperature sensitive mutants, defective in SV40 DNA replication, do not suppress or complement H5ts125 at the nonpermissive temperature. 相似文献
7.
An alternate form of Ku80 is required for DNA end-binding activity in mammalian mitochondria 总被引:1,自引:0,他引:1 下载免费PDF全文
Mammalian mitochondrial DNA end-binding activity is nearly indistinguishable from that of nuclear Ku. This observation led to the hypothesis that mitochondrial DNA end-binding activity is in part dependent upon Ku80 gene expression. To test this hypothesis, we assayed for Ku activity in mitochondrial extracts prepared from the xrs-5 hamster cell line that lacks Ku80 mRNA expression. Mitochondrial protein extracts prepared from this cell line lacked the DNA end-binding activity found in similar extracts prepared from wild-type cells. Azacytidine-reverted xrs-5 cells that acquired nuclear DNA end-binding activity also acquired mitochondrial DNA end-binding activity. Western blot analysis of human mitochondrial protein extracts using a monoclonal antibody specific for an N-terminal epitope of Ku80 identified a protein with an apparent molecular weight of 68 kDa. This mitochondrial protein was not detected by a monoclonal antibody specific for an epitope at the C-terminal end of Ku80. Consistently, while both the N- and C-terminal Ku80 monoclonal antibodies supershifted the nuclear DNA end-binding complex on an electrophoretic mobility shift assay, only the N-terminal monoclonal antibody supershifted the mitochondrial DNA end-binding complex. To confirm that the 68 kDa Ku protein was not a consequence of nuclear protein contamination of mitochondrial preparations, highly purified intact nuclei and mitochondria were treated with proteinase K which traverses the pores of intact nuclei but gains limited access into intact mitochondria. Ku80 in purified intact nuclei was sensitive to treatment with this protease, while the 68 kDa Ku protein characteristic of purified intact mitochondria was resistant. Further, immunocytochemical analysis revealed the co-localization of the N-terminal specific Ku80 monoclonal antibody with a mitochondrial-targeted green fluorescence protein. Mitochondrial localization of the C-terminal Ku80 monoclonal antibody was not observed. These data are consistent with the hypothesis that a C-terminally truncated form of Ku80 is localized in mammalian mitochondria where it functions in a DNA end-binding activity. 相似文献
8.
Alvarez D Novac O Callejo M Ruiz MT Price GB Zannis-Hadjopoulos M 《Journal of cellular biochemistry》2002,87(2):194-207
A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding. 相似文献
9.
10.
Cyclin A protein is synthesized and localized into the nucleus at the onset of S phase in nontransformed mammalian fibroblasts. Inhibition of cyclin A synthesis or activity through microinjection of plasmids encoding antisense cyclin A cDNA or affinity-purified anti-cyclin A antibodies during G1 phase was shown to abolish the nuclear staining for cyclin A in plasmid-injected cells, and both procedures led to inhibition of DNA synthesis. No similar effect was observed with injection of other antisense vectors including antisense cyclin B, and reinjection of purified human cyclin A protein into cyclin A antisense-injected cells effectively relieved this inhibition of DNA synthesis. Taken together, these data suggest that cyclin A plays a major role in the control of DNA replication in mammalian cells. 相似文献
11.
The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins 下载免费PDF全文
Miccoli L Frouin I Novac O Di Paola D Harper F Zannis-Hadjopoulos M Maga G Biard DS Angulo JF 《Molecular and cellular biology》2005,25(9):3814-3830
The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins. 相似文献
12.
A geminivirus replication protein is a sequence-specific DNA binding protein. 总被引:19,自引:5,他引:19 下载免费PDF全文
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication. 相似文献
13.
BACKGROUND: The DNA replication checkpoint ensures that mitosis is not initiated before DNA synthesis is completed. Recent studies using Xenopus extracts have demonstrated that activation of the replication checkpoint and phosphorylation of the Chk1 kinase are dependent on RNA primer synthesis by DNA polymerase alpha, and it has been suggested that the ATR kinase-so-called because it is related to the product of the gene that is mutated in ataxia telangiectasia (ATM) and to Rad3 kinase-may be an upstream component of this response. It has been difficult to test this hypothesis as an ATR-deficient system suitable for biochemical studies has not been available. RESULTS: We have cloned the Xenopus laevis homolog of ATR (XATR) and studied the function of the protein in Xenopus egg extracts. Using a chromatin-binding assay, we found that ATR associates with chromatin after initiation of replication, dissociates from chromatin upon completion of replication, and accumulates in the presence of aphidicolin, an inhibitor of DNA replication. Its association with chromatin was inhibited by treatment with actinomycin D, an inhibitor of RNA primase. There was an early rise in the activity of Cdc2-cyclin B in egg extracts depleted of ATR both in the presence or absence of aphidicolin. In addition, the premature mitosis observed upon depletion of ATR was accompanied by the loss of Chk1 phosphorylation. CONCLUSIONS: ATR is a replication-dependent chromatin-binding protein, and its association with chromatin is dependent on RNA synthesis by DNA polymerase alpha. Depletion of ATR leads to premature mitosis in the presence and absence of aphidicolin, indicating that ATR is required for the DNA replication checkpoint. 相似文献
14.
Stem-loop silencing reveals that a third mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes 下载免费PDF全文
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomes, is a catenated network containing thousands of minicircles and tens of maxicircles. The topological complexity dictates some unusual features including a topoisomerase-mediated release-and-reattachment mechanism for minicircle replication and at least six mitochondrial DNA polymerases (Pols) for kDNA transactions. Previously, we identified four family A DNA Pols from Trypanosoma brucei with similarity to bacterial DNA Pol I and demonstrated that two (POLIB and POLIC) were essential for maintaining the kDNA network, while POLIA was not. Here, we used RNA interference to investigate the function of POLID in procyclic T. brucei. Stem-loop silencing of POLID resulted in growth arrest and the progressive loss of the kDNA network. Additional defects in kDNA replication included a rapid decline in minicircle and maxicircle abundance and a transient accumulation of minicircle replication intermediates before loss of the kDNA network. These results demonstrate that POLID is a third essential DNA Pol required for kDNA replication. While other eukaryotes utilize a single DNA Pol (Pol gamma) for replication of mitochondrial DNA, T. brucei requires at least three to maintain the complex kDNA network. 相似文献
15.
16.
Baculovirus infection induces a DNA damage response that is required for efficient viral replication 总被引:1,自引:0,他引:1
Several mammalian viruses have been shown to induce a cellular DNA damage response during replication, and in some cases, this response is required for optimal virus replication. However, nothing is known about whether a DNA damage response is stimulated by DNA viruses in invertebrates. Cell cycle arrest and apoptosis are two of the downstream effects of the DNA damage response, and both are stimulated by baculovirus infection, suggesting a possible relationship between baculoviruses and the DNA damage response. In the study described in this report, we found that replication of the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) in the cell line Sf9, derived from the lepidopteran insect Spodoptera frugiperda, stimulated a DNA damage response, as indicated by an increased abundance of the S. frugiperda P53 protein (SfP53) and phosphorylation of the histone variant protein H2AX. Stimulation of the DNA damage response was dependent on viral DNA replication. Inhibition of the DNA damage response prevented both the increase in SfP53 accumulation and H2AX phosphorylation and also caused a 10- to 100-fold reduction in virus production, along with decreased viral DNA replication and late gene expression. However, silencing of Sfp53 expression by RNA interference did not significantly affect AcMNPV replication or induction of apoptosis by a mutant of AcMNPV lacking the antiapoptotic gene p35, indicating that these processes are not dependent on SfP53 in Sf9 cells. 相似文献
17.
Autoimmune antigen Ku is enriched on oligonucleotide columns distinct from those containing the octamer binding protein DNA consensus sequence 总被引:3,自引:0,他引:3
During purification of the AP1 complex from the T cell line MLA144 we enriched for a complex which bound to an oligonucleotide column containing the AP1 DNA consensus sequence and co-eluted with a fraction required for AP1 binding activity. This complex although co-eluting with AP1 binding activity had previously been determined to be non-specific in its DNA binding properties. Further investigation determined that the complex was a heterodimer of 85 and 70 kDa which was antigenically related to the autoimmune antigen Ku. It is important to be aware of the abundance and avidity of the Ku complex to bind oligonucleotide columns when purifying sequence specific binding proteins. 相似文献
18.
Purification of RIP60 and RIP100, mammalian proteins with origin-specific DNA-binding and ATP-dependent DNA helicase activities. 总被引:6,自引:5,他引:6 下载免费PDF全文
Replication of the Chinese hamster dihydrofolate reductase gene (dhfr) initiates near a fragment of stably bent DNA that binds multiple cellular factors. Investigation of protein interactions with the dhfr bent DNA sequences revealed a novel nuclear protein that also binds to domain B of the yeast origin of replication, the autonomously replicating sequence ARS1. The origin-specific DNA-binding activity was purified 9,000-fold from HeLa cell nuclear extract in five chromatographic steps. Protein-DNA cross-linking experiments showed that a 60-kDa polypeptide, which we call RIP60, contained the origin-specific DNA-binding activity. Oligonucleotide displacement assays showed that highly purified fractions of RIP60 also contained an ATP-dependent DNA helicase activity. Covalent radiolabeling with ATP indicated that the DNA helicase activity resided in a 100-kDa polypeptide, RIP100. The cofractionation of an ATP-dependent DNA helicase with an origin-specific DNA-binding activity suggests that RIP60 and RIP100 may be involved in initiation of chromosomal DNA synthesis in mammalian cells. 相似文献