首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

2.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

3.
The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura’s medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.  相似文献   

4.
We compared several methods for quantifying the culm surface area (S) of one of the most common bamboos in Japan, Phyllostachys pubescens Mazel ex Houz. Nine sample culms of P. pubescens were felled, and the true S was determined by the fine resolution analysis of the culm form (S FRA). The S was then calculated independently with the sectional measurement method from the successive diameters measured at equal intervals of one-twentieth (S 20), one-tenth (S 10), one-fifth (S 5) and one-half (S 2) of the total culm length. The S was also quantified geometrically from the total culm length and the diameter at breast height or at base by assuming that the culm form could be approximated by a cone (S DBH and S DAB). The S FRA was compared with each of the computed S values. For S 10, S 5 and S 2, both the mean relative bias (%BIAS) and relative root mean square error (%RMSE) decreased with an increase in the number of measured diameters. The %BIAS and %RMSE of the S 10 were, respectively, comparable and smaller compared to those of S 20. The bias of the S DBH and S DAB suggested that the cone assumption of the culm form was violated. In conclusion, we recommend that the S should be quantified from the successive diameters measured at equal intervals of one-tenth of the total culm length using the sectional measurement method.  相似文献   

5.
The fungal lectin purified from Sclerotinia sclerotiorum, further referred to as Sclerotinia sclerotiorum agglutinin or SSA, possesses insecticidal activity against important pest insects such as pea aphids (Acyrthosiphon pisum). This paper aims at a better understanding of its activity at cellular level. Therefore, different insect cell lines were treated with SSA. These cell lines were derived from different tissues and represent the three major orders of insects important in agriculture: CF-203 (midgut Choristoneura fumiferana, Lepidoptera), GUTAW1 (midgut, Helicoverpa zea, Lepidoptera), High5 cells (ovary, Trichoplusia ni, Lepidoptera), Sf9 (ovary cells from Spodoptera frugiperda, Lepidoptera), S2 (hemocyte, Drosophila melanogaster, Diptera), and TcA (whole body, Tribolium castaneum, Coleoptera). Although the sensitivity to SSA differs between the cell lines, SSA clearly showed toxicity in all six cell lines with median effect concentrations (EC50) ranging between 9 and 42 μg/ml. An in-depth analysis of the mechanism of uptake in the cells revealed superior amounts of FITC-SSA at the membrane of CF-203 cells compared to Sf9 cells, while a similar small amount of SSA was internalized in both cell lines. Pre-incubation with the clathrin-mediated endocytosis inhibitor phenylarsine oxide inhibited the internalization of SSA into the CF-203 and Sf9 cells with a respective reduction of 6- and 1.7-fold. The data are discussed in relation to the importance of cellular uptake mechanism for SSA binding and cytotoxicity.  相似文献   

6.
Syringin, sinapyl alcohol 4-O-glucoside, is well known as a plant-derived bioactive monolignol glucoside. In Arabidopsis, recombinant chimeric protein UGT72E3/2 has been previously reported to lead to significantly higher syringin production than the parental enzymes UGT72E2 and UGT72E3. To enhance syringin content in Korean soybean (Glycine max L. ‘Kwangan’), we cloned the UGT72E3/2 gene under the control of the β-conglycinin or CaMV-35S promoter to generate β-UGT72E3/2 and 35S-UGT72E3/2 constructs, respectively, and then transformed them into soybean to obtain transgenic plants using the modified half-seed method. Real-time semi-quantitative PCR (RT-PCR) analysis showed that the UGT72E3/2 gene was expressed in the leaves of the β-UGT72E3/2 and 35S-UGT72E3/2 transgenic lines. HPLC analysis of the seeds and mature tissues of the T2 generation plants revealed that the β-UGT72E3/2 transgenic seeds accumulated 0.15 µmol/g DW of total syringin and 0.29 µmol/g DW of total coniferin, whereas coniferin and syringin were not detected in non-transgenic seeds. Moreover, coniferin and syringin also accumulated at high levels in non-seed tissues, particularly the leaves of β-UGT72E3/2 transgenic lines. In contrast, 35S-UGT72E3/2 lines showed no differences in the contents of coniferin and syringin between transgenic and non-transgenic soybean plants. Thus, the seed-specific β-conglycinin promoter might be an effective tool to apply to the nutritional enhancement of soybean crops through increased syringin production.  相似文献   

7.
On the basis of the winter bread wheat cultivar Obryi, two independent disomic addition lines BC12F with the chromosome of the E. sibiricus St genome are created. A practical algorithm for determining the probabilities of transmission of the odd chromosome separately through male and female gametes in selfpollination of hemizygous hybrids from the equation p2–(1 + f1f4) × p + f1 = 0 is proposed, where p is the probability of the formation of viable gametes with the considered chromosome and f1 and f4 are the empirical frequencies of the corresponding homozygotes with and without the trait. The probability of transmission of an alien univalent chromosome through pollen (p) is associated with the frequency of its transmission through the egg cell (p) in backcrosses and in self-pollination (1–f4) by the equation p = 1–f4/(1–p). The calculated empirically dependent estimates of the probabilities of transmission of the added chromosome through the egg cell p = 18.7% and through pollen p = 4.3% correspond to the empirical frequencies obtained for backcrosses. The coefficients of the gamete selection V = 0.748 and V = 0.172 are calculated, and the expected segregation for the alien trait controlled by a dominant gene located in the added chromosome is determined—with the trait: without the trait is 0.222: 0.778 in F2; 0.187: 0.813 in equational and 0.043: 0.957 in certational backcrosses.  相似文献   

8.
9.

Key message

Molecular analysis of a zeta subfamily GST gene from T. hispida involved in ABA and methyl viologen tolerance in transgenic Arabidopsis and Tamarix.

Abstract

Glutathione S-transferase (GST) genes are important for the improvement of plant abiotic stress tolerance, and our previous study demonstrated that the ThGSTZ1 gene from Tamarix hispida improves plant salt and drought tolerance. To further understand the role of ThGSTZ1 in the response of plants to abscisic acid (ABA) and oxidative stress, three ThGSTZ1-overexpressing transgenic Arabidopsis thaliana lines were analyzed in the current study. The results showed that the transgenic lines exhibited higher biomass accumulation, higher activities of GST and other protective enzymes, and less reactive oxygen species (ROS) and cell damage than wild-type (WT) plants under ABA and methyl viologen (MV) stress. In addition, the analysis of a transgenic T. hispida line transiently expressing ThGSTZ1 confirmed these results. The activities of GST, glutathione peroxidase, and superoxide dismutase were markedly higher in the ThGSTZ1-overexpressing lines compared with the control lines under both ABA and MV treatments, and the transgenic lines also exhibited a lower degree of electrolyte leakage (EL) and a decreased H2O2 content. All these results suggested that ThGSTZ1 can also improve plant ABA and oxidation tolerance by regulating ROS metabolism and that ThGSTZ1 represents an excellent candidate gene for molecular breeding to increase plant stress tolerance.
  相似文献   

10.

Main conclusion

Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization.

Abstract

Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1–S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.
  相似文献   

11.
The mirid bug Apolygus lucorum (Meyer-Dür) (Heteroptera: Miridae) is a severe pest of cotton and other crops in China. The feeding preferences of this pest are unclear due to its frequent movement among different host plants and the inconspicuous signs of its feeding. Here, we present results of a field trial that used direct observation of bug densities and a PCR-based molecular detection assay to detect plant DNA in bugs to explore relationships between A. lucorum population abundance and its feeding preference between two host plants, Humulus scandens (Loureiro) Merrill and Medicago sativa L. The field-plot samples showed that A. lucorum adults generally prefer flowering host plants. Its density was significantly higher on flowering H. scandens than on seedlings of M. sativa, and a similarly higher bug density was observed on flowering M. sativa than on seedlings of H. scandens. In the laboratory, we designed two pairs of species-specific primers targeting the trnL-F region for H. scandens and M. sativa, respectively. The detectability of plant DNA generally decreased with time post-feeding, and the half-life of plant DNA detection (DS50) in the gut was estimated as 6.26 h for H. scandens and 3.79 h for M. sativa with significant differences between each other. In mirid bugs exposed to seedlings of H. scandens and flowering M. sativa, the detection rate of M. sativa DNA was significantly higher than that of H. scandens. Meanwhile, in mirid bugs exposed to seedlings of M. sativa and flowering H. scandens, a significantly higher detection rate of H. scandens DNA was found. We developed a useful tool to detect the remaining plant food species specifically from the gut of A. lucorum in the current study. We provided direct evidence of its feeding preference between H. scandens and M. sativa at different growth stages, which strongly supported a positive correlation between population abundance and feeding preference of A. lucorum on different plants under field conditions. The findings provide new insights into the understanding of A. lucorum’s feeding preference, and are helpful for developing the strategies to control this pest.  相似文献   

12.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

13.
Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systems—continuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale ×)/soybean-maize, maize-switchgrass (Panicum virgatum), triticale/sorghum (Sorghum bicolor), and triticale-aspen (Populus alba × P. grandidentata)—on soil-saturated hydraulic conductivity (K S ) across a toposequence in central Iowa, USA. We compared data from the time of cropping system establishment in 2009 to 4 years post-establishment. Both our 2009 and 2013 data confirmed that cropping system impacts on K S vary by landscape position. We found that differences in cropping system impacts were more likely to occur at lower landscape positions, specifically, within footslope and floodplain positions. Previous research on cropping system impacts suggested that grass and woody systems were associated with a general increase in K S over time, with greater changes likely occurring at landscape positions with a higher erosive potential or lower SOC content. Our results confirmed that the triticale-aspen woody system was associated with a significant increase in K S across all landscape positions. In contrast, we did not observe an increase in K S under maize-switchgrass, which we attributed to the high density of switchgrass roots by the fourth year of study, but expect an increase in K S under switchgrass under longer measurement periods. We also found a significant increase in K S in the annual systems, likely due to the conversion to no-till soil management with cropping system establishment. We expect such differences to become more apparent over longer time scales as cropping systems continue to impact soil hydraulic properties.  相似文献   

14.
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, ‘Abugo’ and ‘Ceremeño’, were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S 21 , but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S 21 , so it was named S 21 °. S-genotypes assigned to ‘Abugo’ and ‘Ceremeño’ were S 10 S 21 ° and S 21 °S 25 respectively, of which S 25 is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S 21 and S 21 ° indicated that both alleles exhibit the same pollen function; however, cultivars bearing S 21 ° had impaired pistil-S function as they failed to reject either S 21 or S 21 ° pollen. RT-PCR analysis showed absence of S 21 °-RNase gene expression in styles of ‘Abugo’ and ‘Ceremeño’, suggesting a possible origin for S 21 ° pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S 21 ° and indels at the 3′UTR) might explain the different pattern of expression between S 21 and S 21 °. Evaluation of cultivars with unknown S-genotype identified another cultivar ‘Azucar Verde’ bearing S 21 °, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.  相似文献   

15.
In vitro growth, development, total soluble proteins and peroxidase profiles of Salvadora oleoides and Salvadora persica under NaCl stress were analysed in the present investigation. The plants are evergreen haloxeric tree species of family Salvadoraceae. Shoot apex from natural plants were initially used for screening of NaCl tolerance on MS culture medium. Shoot apex of S. oleoides and S. persica could survive optimally up to 200 and 100 mM NaCl. Axillary buds from nodal shoot segments of S. oleoides and S. persica were activated on 6 and 4 μM BAP, and were used further for extraction of total soluble proteins and peroxidases. Total soluble proteins were increased up to 150 mM NaCl in S. oleoides, but decline above 50 mM NaCl in S. persica. Peroxidase activity remained almost constant in S. oleoides at all the concentrations and duration of NaCl, but increased at 100 mM NaCl during fourth week of treatment in S. persica. Eleven peroxidase isozymes were observed in zymogram of S. oleoides. Isozymes P1, P2, P3, and P4 were slightly appeared, but P6 isozyme was lacking in S. persica. The P5 isozyme was more prominent in S. persica than S. oleoides. Isozyme P9 of S. persica was visible during the first week of NaCl treatment, but disappeared in the fourth week. Molecular biology of these plants can be useful further for the understanding of stress tolerance mechanisms for prospects.  相似文献   

16.
The expression level of electrophoretically separated S- and F-allozymes of β-specific esterase (EC 3.1.1.2) in genotypes of wild-type Drosophila melanogaster (males and females) that are monozygous or heterozygous with respect to the locus β-Est is determined by means of computerized densitometry; α-naphthylacetate, β-naphthylacetate, and α-naphthylpropionate are used as the substrates. The intensity of the expression of the esterase is judged from the quantity of reaction product created as a result of simultaneous azo coupling between naphthol and diazonium in 4, 24, 44, and 64 min incubation times. Reliable differences in the expressions of the S- and F-allozymes as a function of the structure of the β-Est locus of genotypically distinct individuals are established. In all the variant experiments, a higher level of summary activity of the S- and F-allozymes of the β-esterase of the heterozygotes by comparison with the individual activity of the F-and S-allozymes of the corresponding homozygotes was demonstrated, independently of the sex of the Drosophila individual. A comparative estimate of the temporal dynamics of the expression of in vitro allozymes of the dominant homozygotes (β-Est S /β-Est S ), heterozygotes (β-Est S /β-Est F ), and recessive homozygotes (β-Est F /β-Est F ) is performed. Possible mechanisms for the occurrence of heterosis according to the character of expression of S- and F-allozymes of β-esterase on the basis of the theory of biochemical enrichment of heterozygote genotypes are considered.  相似文献   

17.
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is an invasive species present in numerous agroecosystems in North America. Despite adverse impacts as a threat to native biodiversity, a nuisance household invader and a pest in fruit production, H. axyridis also plays a beneficial role as a major component of assemblages of generalist predators in several agricultural crops. Here, we review the role of H. axyridis as a natural enemy of Aphis glycines Matsumura (Hemiptera: Aphididae), an invasive pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), in North America. Harmonia axyridis is often the most abundant predator species attacking A. glycines in soybean agroecosystems. This predator has the potential to both prevent and suppress A. glycines outbreaks. Further studies are needed to fully understand and utilize the potential of H. axyridis as a natural enemy in the management of A. glycines and other agricultural pests in agroecosystems worldwide.  相似文献   

18.
19.
Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death 1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号