首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β‐estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β‐casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP‐1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP‐1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR‐SREBP‐1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.  相似文献   

2.
The intracellular fatty acid-binding proteins (FABPs) are a well-conserved family that function as lipid chaperones. Ongoing studies are focused on identification of the mechanistic complexity and vast biological diversity of different isoforms of FABPs. However, the molecular mechanism of FABP5 in the regulation of milk fat synthesis in the mammary gland of dairy cows is still largely unknown. Here, we report that FABP5 acts as a critical regulator of terol response element-binding protein-1c (SREBP-1c) gene expression induced by methionine (Met) and estrogen (E2) in bovine mammary epithelial cells (BMECs). We observed that the expression of FABP5 was markedly higher in dairy cow mammary tissue during the lactating period than the puberty period and the dry period. FABP5 is located in the cytoplasm, and Met and E2 significantly increase the protein levels of FABP5 in BMECs. Using gene function study approaches, we revealed that FABP5 positively regulates SREBP-1c gene expression and promotes milk fat synthesis. We confirmed that FABP5 is required for Met- and E2-induced SREBP-1c gene expression and milk fat synthesis. We further uncovered that fatty acids are needed for FABP5-mediated SREBP-1c gene expression. Thus, our study demonstrates that FABP5 is a critical regulator of Met- and E2-induced SREBP-1c gene expression leading to milk fat synthesis.  相似文献   

3.
Adenylyl cyclase‐associated protein (CAP) is a highly conserved protein. Previous reports have suggested that CAP1 may be a negative regulator of cellular proliferation, migration, and adhesion and the development of cell carcinomas. The molecular mechanism of CAP1 regulation of downstream pathways, as well as how CAP1 is regulated by environmental stimuli and upstream signalling, is not well understood. In this present study, we assessed the role of CAP1 in milk synthesis and proliferation of bovine mammary epithelial cells. Using gene overexpression and silencing methods, CAP1 was found to negatively regulate milk synthesis and proliferation of cells via the PI3K‐mTOR/SREBP‐1c/Cyclin D1 signalling pathway. Hormones, such as prolactin and oestrogen, and amino acids, such as methionine and leucine, stimulate MMP9 expression and trigger CAP1 degradation, and thus, abrogate its inhibition of synthesis of milk protein, fat, and lactose by and proliferation of bovine mammary epithelial cells. The results of our study help deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in characterizing the molecular mechanisms of CAP1. Previous reports have suggested that CAP1 is a negative regulator of cellular proliferation and anabolism, but the molecular mechanisms are largely unknown. In this present study, we identified CAP1 as a negative regulator of milk synthesis and proliferation of bovine mammary epithelial cells. Our results will deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in exploring the molecular mechanisms of CAP1.  相似文献   

4.
Amino acids are required for the mammalian target of rapamycin (mTOR) signaling pathway and milk synthesis in bovine mammary epithelial cells (BMECs). However, the mechanism through which amino acids activate this pathway is largely unknown. Here we show that glycyl-tRNA synthetase (GlyRS) mediates amino acid-induced activation of the mTOR-S6K1/4EBP1 pathway, and milk protein and fat synthesis in BMECs. Among 19 aminoacyl-tRNA synthetases, only the mRNA expression of GlyRS and Leucyl-tRNA synthetase (LeuRS) were significantly increased by several amino acids including Met and Leu. We then observed that GlyRS knockdown abolished the stimulation of Met on milk protein and fat synthesis in BMECs, whereas GlyRS overexpression led to more significantly increased milk synthesis in cells treated with Met. By western blotting and qualitative real time-polymerase chain reaction analysis (qRT-PCR) analysis, we next revealed that GlyRS is required for amino acid-induced activation of the mTOR-S6K1/4EBP1 pathway. Thus, this study establishes that GlyRS mediates amino acid-induced activation of the mTOR pathway, thereby regulating milk protein and fat synthesis.  相似文献   

5.
6.
7.
8.
Mammary gland development is controlled by several genes. Although miRNAs have been implicated in mammary gland function, the mechanism by which miR-486 regulates mammary gland development and lactation remains unclear. We investigated miR-486 expression in cow mammary gland using qRT-PCR and ISH and show that miR-486 expression was higher during the high-quality lactation period. We found that miR-486 targets phosphoinositide signaling in the cow mammary gland by directly downregulating PTEN gene expression and by altering the expression of downstream genes that are important for the function of the mammary gland, such as AKT, mTOR. We analyzed the effect of β-casein, lactose and triglyceride secretion in bovine mammary gland epithelial cells (BMECs) transfected by an inhibitor and by mimics of miR-486. Our results identify miR-486 as a downstream regulator of PTEN that is required for the development of the cow mammary gland.  相似文献   

9.
The ATP-binding cassette transporter, ABCG2, has been identified as a gene of significance in the regulation of bovine lactation by a number of gene mapping studies yet its role in lactational physiology remains unclear. We have used the potent ABCG2 specific inhibitor, Ko143, to investigate role of ABCG2 in primary bovine mammary epithelial cell (BMEC) proliferation and differentiation. After incubation with Ko143, the proliferation rate of BMECs was reduced at 48 and 72 hours by up to 80% (P?相似文献   

10.
刘莉莉  郭爱伟  吴培福  陈粉粉  杨亚晋  张勤 《遗传》2018,40(12):1092-1100
本课题组前期通过GWAS研究,发现VPS28基因在荷斯坦奶牛乳腺组织中特异性高表达,且其5′-UTR的突变位点-58C>T与乳脂性状关联,但其对乳脂性状的调控机理尚未明确。本研究为了明确VPS28基因及其突变位点-58C>T对乳脂的调控机理,首先利用启动子活性分析检测突变位点-58C>T对VPS28基因的影响,发现该突变位点显著降低VPS28基因启动子活性;然后利用RNA干扰技术敲降奶牛原代乳腺上皮细胞中VPS28基因表达量,检测VPS28通路和乳脂合成相关基因mRNA表达量以及细胞中脂肪滴形态,分析结果发现敲降VPS28基因可降低泛素化-溶酶体和泛素化-蛋白酶体通路基因和乳脂合成相关基因的表达量,并提高细胞中甘油三酯的合成,预示VPS28基因可能通过泛素化-溶酶体和泛素化-蛋白酶体途径调控乳脂生成。本研究结果在转录组水平揭示VPS28基因对乳脂合成的调控机制,为奶牛乳脂性状的分子育种研究提供参考依据。  相似文献   

11.
The ATP-binding cassette transporter, ABCG2, has been identified as a gene of significance in the regulation of bovine lactation by a number of gene mapping studies yet its role in lactational physiology remains unclear. We have used the potent ABCG2 specific inhibitor, Ko143, to investigate role of ABCG2 in primary bovine mammary epithelial cell (BMEC) proliferation and differentiation. After incubation with Ko143, the proliferation rate of BMECs was reduced at 48 and 72 hours by up to 80% (P < 0.001), and the effect was dose-dependent (approximately 40% with 10 nM Ko143 and 80% with 20 nM Ko143). Morphological changes in BMEC mammosphere formation were not observed when co-incubated with Ko143. Our results suggested that ABCG2 plays a role in mammary epithelial cell proliferation and that functional polymorphisms in this gene may influence the cellular compartment of the mammary gland and potentially milk production.  相似文献   

12.
J W Perry  T Oka 《In vitro》1984,20(1):59-65
The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and alpha-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. These results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

13.
Exogenous bovine growth hormone at a dose of 0.1 mg kg-1 liveweight increased yields of milk and milk constituents and milk fat content when injected over 5 days into ewes in mid-lactation. These changes in milk production were associated with changes in the supply to, and utilization of, nutrients by leg muscle and mammary tissues. Arterial concentrations of glucose and non-esterified fatty acids increased significantly, concentrations of lactate and 3-hydroxybutyrate tended to increase, and concentrations of triglycerides associated with very low-density lipoproteins decreased significantly. Growth hormone increased mammary uptake of non-esterified fatty acids, decreased mammary uptake of very low-density lipoproteins and tended to reduce the release of lactate from leg muscle. Oxidation of non-esterified fatty acids in the whole body and mammary tissue was increased by growth hormone and there was a tendency for reduction of glucose oxidation in mammary tissues. During injection of growth hormone, blood flow to leg muscle and mammary tissues increased as did the calculated ratio of blood flow; milk yield. These changes in blood flow, together with changes in arterial concentrations and tissue utilizations of key metabolites, were sufficient to account for the synthesis of extra milk and milk constituents.  相似文献   

14.
15.
Summary The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and α-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. The results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

16.
17.
18.
Lipotropes alter casein gene expression in bovine mammary acinar culture   总被引:4,自引:0,他引:4  
Lipotropes (methyl group containing nutrients, including methionine and choline, folic acid, and vitamin B(12)) are essential for cell proliferation and differentiation of mammary tissues. Lipotropes interact in the supply and regulation of intracellular methyl group pools, thereby affecting synthesis and methylation of DNA. To determine the effect of lipotropes on milk protein gene expression, acini isolated from mammary tissues of lactating cows were cultured in one of three treatment media: (1) control, (2) lipotrope deficient, and (3) lipotrope supplemented. beta-Casein mRNA was determined by Northern blotting, and milk protein secretion was measured by a pulse-chase method. The level of beta-casein mRNA was lower in cells grown in lipotrope-deficient medium than in cells grown in the lipotrope-supplemented and control media. Acinar cells cultured in lipotrope-deficient medium also had approximately threefold less milk protein secretion than that of cells in either control or lipotrope-supplemented media. Protein secretion did not differ in the control and lipotrope-supplemented groups. The present study indicates that lipotrope deficiency suppresses total protein secretion and beta-casein gene expression in bovine mammary alveolar epithelial cells in culture.  相似文献   

19.
Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.  相似文献   

20.
The role of essential amino acids (AA) on protein synthesis via the mTOR pathway was studied in murine mammary epithelial cells cultured under lactogenic conditions. Leu, Ile, and Val increased S6K1 phosphorylation compared to that measured in AA-deprived cells. Trp, Phe, and Met had no effect. Surprisingly, Lys, His, and Thr inhibited S6K1 phosphorylation in both murine and bovine mammary cells. Thr exhibited the most potent inhibition, being the only amino acid that competed with Leu's positive role. In non-deprived cells, there was no observable effect of Lys, His, or Thr on S6K1 phosphorylation at concentrations up to five times those in the medium. However, their addition as a mix revealed a synergistic negative effect. Supplementation of Lys, His, and Thr abrogated mTOR Ser 2448 phosphorylation, with no effect on Akt Ser 473-an mTORC2 target. This confirms specific mTORC1 regulation of S6K1 phosphorylation. The individual supplementation of Lys, His, and Thr maintained a low level of IRS-1 phosphorylation, which was dose-dependently increased by their combined addition. Thus, in parallel to inhibiting S6K1 activity, these AA may act synergistically to activate an additional kinase, phosphorylating IRS-1 via an S6K1-independent pathway. In cultures supplemented by Lys, His, and Thr, cellular protein synthesis decreased by up to 65%. A more pronounced effect was observed on beta-casein synthesis. These findings indicate that positive and negative signaling from AA to the mTOR pathway, combined with modulation of insulin sensitization, mediate the synthesis rates of total and specific milk proteins in mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号